CHINA’S NUCLEAR POWER PROGRAM
中国核电工程

Presentation to the Canadian Nuclear Society
25 January 2007

Jintong Li
Ph.D, Chemical Engineer
AECL CRL
"Perhaps, no other nuclear industry is as difficult to write about as that of China."

From the US Energy Information Administration
1. BACKGROUND

- Power Situation in China until 2005

Power Composition (%) in 2005

- Fossil fuels mainly coal
- Hydro
- Nuclear

Total Installed Power Capacity, 500 GW

Current Difficulties in China

- Sever pollution – Coal fired power plants as the big contributor
 16 out of 20 the world most polluted cities in China.
- Rolling blackouts came back in the coastal area since 2002.
- 10 million population in remote areas – still no access to power.
1. BACKGROUND

- Power shortage - persisted before 1970s
 Power shortage in Shanghai.
 Logistic challenge for the city.
- Geographical reality
 Power demand mainly in coastal areas.
 Main energy reserve in inland areas.
2. MAJOR COMPONENTS in the China’s Nuclear Power Program

- Localization - Local designs and local components. (Diversity, Learning and Standardization).
- Nuclear plant construction and operation.
- Uranium enrichment.
- Fuel reprocessing and cycle.
- Waste management and disposal.
- Generation IV program – including fast breeder and high temperature reactor.
- Fusion technology.
- Hybrid fusion-fission technology.
3. THE FUEL – URANIUM

- Uranium first found in Guangxi.
- Uranium reserve – very limited resources.
3. THE FUEL – URANIUM

The Northwest Uranium Enrichment Plant (in GanSu Province), 西北铀浓缩厂
3. THE FUEL – URANIUM
Reserve and Demand

- Total Uranium reserve: 77,000 tons
 Only feed the existing reactors for 46 years
- With future Uranium demands
 Only enough – 9 years at the level of 2020.
 Only enough – 4 – 5 years at the level of 2040.

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear Capacity (GW)</th>
<th>Nuclear Share (%)</th>
<th>U Consumption (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>7-8</td>
<td>~1.6</td>
<td>1,650</td>
</tr>
<tr>
<td>2010</td>
<td>14</td>
<td>~2</td>
<td>2,500</td>
</tr>
<tr>
<td>2020</td>
<td>40</td>
<td>4</td>
<td>8,250</td>
</tr>
<tr>
<td>20401</td>
<td>83</td>
<td>5.5</td>
<td>15,000</td>
</tr>
<tr>
<td>20402</td>
<td>120</td>
<td>8</td>
<td>22,000</td>
</tr>
</tbody>
</table>
3. THE FUEL – URANIUM

China-Australia Uranium Deal
3. THE FUEL – URANIUM

Reprocessing

Locations: GanSu, Sichuan, XinJiang
3. THE FUEL – URANIUM
Fuel Reprocessing

• **Two facilities** in Gansu province
 - Operational in 1966 currently closed down.

• **China's largest plant** in Sichuan province
 - Operational around 1974 and in 1999 decided to be decommissioned.

• **GOBI DESERT facility-I**, a pilot plant with a capacity of processing 100 kg of uranium per day completion in 1995.

• **GOBI DESERT facility-II**, a pilot plant with a capacity of 50-100 tons of spent fuel per year completion around 2000.

• The mothballed German mixed oxide (MOX) fuel reprocessing and fabrication Siemens Hanau plant **announced sale** to China in 2003.

• **Lanzhou pilot plant (Gansu province)** - throughput of 100 to 400 kilograms of low enriched uranium (LEU) per day operational in 2006.
4. CURRENT STATUS

Worldwide Nuclear Power Units and Output by Nation by 2006

<table>
<thead>
<tr>
<th>No.</th>
<th>Nation</th>
<th># Units</th>
<th>Power Capacity (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>104</td>
<td>100,460</td>
</tr>
<tr>
<td>2</td>
<td>France</td>
<td>59</td>
<td>63,363</td>
</tr>
<tr>
<td>3</td>
<td>Japan</td>
<td>53</td>
<td>45,218</td>
</tr>
<tr>
<td>4</td>
<td>Russia</td>
<td>31</td>
<td>20,843</td>
</tr>
<tr>
<td>5</td>
<td>Germany</td>
<td>18</td>
<td>20,643</td>
</tr>
<tr>
<td>6</td>
<td>Canada</td>
<td>22</td>
<td>15,222</td>
</tr>
<tr>
<td>7</td>
<td>South Korea</td>
<td>19</td>
<td>15,850</td>
</tr>
<tr>
<td>8</td>
<td>Ukraine</td>
<td>15</td>
<td>13,200</td>
</tr>
<tr>
<td>9</td>
<td>UK</td>
<td>23</td>
<td>11,852</td>
</tr>
<tr>
<td>10</td>
<td>Sweden</td>
<td>10</td>
<td>8,938</td>
</tr>
<tr>
<td>11</td>
<td>China</td>
<td>10</td>
<td>7,587</td>
</tr>
<tr>
<td>12</td>
<td>Spain</td>
<td>8</td>
<td>7,442</td>
</tr>
<tr>
<td>13</td>
<td>Belgium</td>
<td>7</td>
<td>5,728</td>
</tr>
</tbody>
</table>
4. CURRENT STATUS

Overview on Existing and Approved NPP

- **Haiyang**
 - 2X1000 MW

- **Tianwan**
 - 2X1000 MW

- **Qinshan**
 - Phase I 300 MW
 - Phase II 2 X 600 MW
 - Phase III 2 X 700 MW
 - Phase IV 2 X 650 MW

- **Sanmen**
 - 2X1000 MW

- **HuiAn**
 - 2X1000 MW

- **Daya Bay**
 - 2X982 MW

- **Ling Ao**
 - 2X982 MW

- **Yangjiang**
 - 6X1000 MW
4. CURRENT STATUS

Existing NPP in China

<table>
<thead>
<tr>
<th>Stations</th>
<th>Power Output (MWe)</th>
<th>Reactor Type</th>
<th>Supplier</th>
<th>Owner</th>
<th>In-Service Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qinshan Phase I</td>
<td>310</td>
<td>PWR</td>
<td>CNNC¹</td>
<td>CNNC</td>
<td>Dec 1991</td>
</tr>
<tr>
<td>Daya Bay Units 1 and 2</td>
<td>2 x 984</td>
<td>PWR</td>
<td>Framatome</td>
<td>CGNPC</td>
<td>Unit 1 in Aug 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2 in Feb 1994</td>
</tr>
<tr>
<td>LingAo Units 1 and 2</td>
<td>2 x 990</td>
<td>PWR</td>
<td>Framatome</td>
<td>CGNPC</td>
<td>Unit 1 in Feb 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2 in Dec 2002</td>
</tr>
<tr>
<td>Qinshan Phase II Units 1</td>
<td>2 x 650</td>
<td>PWR</td>
<td>CNNC²</td>
<td>CNNC</td>
<td>Unit 1 in Feb 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2 in Mar 2004</td>
</tr>
<tr>
<td>Qinshan Phase III Units</td>
<td>2 x 728</td>
<td>CANDU</td>
<td>AECL</td>
<td>CNNC</td>
<td>Unit 1 in Dec 2002</td>
</tr>
<tr>
<td>Units 1 and 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2 in Jul 2003</td>
</tr>
<tr>
<td>Tianwan Units 1 and 2</td>
<td>2 x 1060</td>
<td>VVER PWR (Russian)</td>
<td>ASE</td>
<td>CNNC</td>
<td>Unit 1 in May 2006³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2 expected in 2007</td>
</tr>
</tbody>
</table>

¹ Based on French and US Technology
² Based on French design
³ Originally scheduled for 2004
4. CURRENT STATUS

Phase IV under construction (2006~) 2XCNP-600 MW Qinshan (秦山)

Qinshan Phase I Unit – 310 MW

Qinshan Phase II Units – 2 X 650 MW

Qinshan Phase III – Two Candu-6 Units – 2 X 730 MW
4. CURRENT STATUS

Existing NPP - Daya Bay (大亚湾)

Two units: 984 MWe each
Vendor – Framatome.
4. CURRENT STATUS – Ling Ao (岭澳)
Phase II under construction (2005~) 2XCNP-1000 MW

Two Units – 990 MWe each
Vendor - Framatome
4. CURRENT STATUS
Existing NPP – Tianwan (田湾)

Two Units – 1000 MWe each
Vendor - ASE

Photo taken Sept. 2003

Photo taken 2006
5. TIMELINE OF THE CHINESE NUCLEAR POWER

- 1981 - A proposal submitted to build a 300 MW PWR at Haiyan (Qinshan 1); the first nuclear reactor connected to the grid in 1991.
- 2000 - 16 billion kwhrs.
- 2004 - NDRC planned to add at least 2 more reactors per year for the next 16 years until 2020.
- 2010 – Quadruple the level of 2000 to 66 billion kwhrs.
- 2020 - Climbs to 142 billion Kwhr 9 fold the level of 2000.
- 2040 – Treble the level in 2020 or 20 fold the level of 2000.
Not shown: Pakistan, projected 4.3 GW by 2020, North Korea, projected 5.7 GW by 2020.
6. INFRASTRUCTURE

CHINA'S RESEARCH REACTORS

CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), Beijing

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type(s)</th>
<th>Operator</th>
<th>Fuel</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Power Fast Reactor</td>
<td>Fast critical</td>
<td>CIAE</td>
<td>90% HEU</td>
<td>0.05 kW</td>
</tr>
<tr>
<td>CEFR</td>
<td>FBR (under construction)</td>
<td>(under construction)</td>
<td>60% HEU</td>
<td>65 MW</td>
</tr>
<tr>
<td>HWRR-2</td>
<td>Heavy water</td>
<td>IAE</td>
<td>3 % LEU</td>
<td>15 MW</td>
</tr>
<tr>
<td>MNSR-IAE</td>
<td>Tank-in-pool (same)</td>
<td>(same)</td>
<td>90% HEU</td>
<td>27 kW</td>
</tr>
<tr>
<td>SPR-IAE</td>
<td>Pool (same)</td>
<td>(same)</td>
<td>10% LEU</td>
<td>3.5 MW</td>
</tr>
<tr>
<td>CARR</td>
<td>NG RR (under construction)</td>
<td>(under construction)</td>
<td>LEU</td>
<td>60 MW</td>
</tr>
</tbody>
</table>

INSTITUTE OF NUCLEAR ENERGY TECHNOLOGY (INET), Tsinghua University

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type(s)</th>
<th>Operator</th>
<th>Fuel</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTHHR (NHR-5)</td>
<td>Heating prototype</td>
<td>INET</td>
<td>3% LEU</td>
<td>5 MWth</td>
</tr>
<tr>
<td>Tsinghua Reactor</td>
<td>Pool-2 cores</td>
<td>INET</td>
<td>10% LEU</td>
<td>2.8 MW</td>
</tr>
<tr>
<td>HTR-10</td>
<td>HGTR</td>
<td>INET</td>
<td>17% LEU</td>
<td>10 MWth</td>
</tr>
</tbody>
</table>
6. INFRASTRUCTURE
CHINA'S RESEARCH REACTORS

SOUTHWEST REACTOR ENGINEERING RESEARCH AND DESIGN ACADEMY (FIRST ACADEMY), Jiajiang, Sichuan Province

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type(s)</th>
<th>Operator</th>
<th>Fuel</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFETR</td>
<td>Tank</td>
<td>First Academy</td>
<td>93% HEU [1]</td>
<td>125 MWth</td>
</tr>
<tr>
<td>HFETR Critical</td>
<td>Critical assembly</td>
<td>First Academy</td>
<td>90% HEU</td>
<td>0 kW</td>
</tr>
<tr>
<td>PPR Pulsing</td>
<td>Pool UZRH</td>
<td>First Academy</td>
<td>20% MEU</td>
<td>1 MW</td>
</tr>
<tr>
<td>SPRR-300</td>
<td>Pool</td>
<td>First Academy</td>
<td>10% LEU</td>
<td>3.7 MW</td>
</tr>
<tr>
<td>MJTR</td>
<td>Pool</td>
<td>First Academy</td>
<td>90% HEU</td>
<td>5 MW</td>
</tr>
<tr>
<td>Zero Power Reactor</td>
<td>Critical assembly</td>
<td>First Academy</td>
<td>Shutdown</td>
<td></td>
</tr>
</tbody>
</table>

[1] China has reportedly told US officials that it plans to convert the HFETR to use LEU fuel.
6. INFRASTRUCTURE

CHINA'S RESEARCH REACTORS

SHANDONG GEOLOGY BUREAU

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type(s)</th>
<th>Operator</th>
<th>Fuel</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNSR-SD</td>
<td>Tank-in-pool</td>
<td>Shandong Geology Bureau</td>
<td>90% HEU</td>
<td>27 kW</td>
</tr>
</tbody>
</table>

SHENZHEN UNIVERSITY

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type(s)</th>
<th>Operator</th>
<th>Fuel</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNSR-SZ</td>
<td>Tank-in-pool</td>
<td>Shenzhen University</td>
<td>90% HEU</td>
<td>27 kW</td>
</tr>
</tbody>
</table>
6. INFRASTRUCTURE

Nuclear Authorities

THE STATE COUNCIL – FINAL APPROVAL

• China Atomic Energy Authority (CAEA) - New plant feasibility studies
 1. Planning & Managing nuclear energy
 2. Reviewing & Approving feasibility studies for new plants
 3. Promoting International Cooperation

• National Nuclear Safety Administration (NNSA) - Sitting proposals
 1. Licensing and regulations
 2. Maintaining international agreements regarding safety

• National Development and Reform Commission (NDRC) – Project proposals
 Project approvals

• State Environmental Protection Administration (SEPA) - Environmental studies
 1. Radiological monitoring
 2. Radioactive waste management
6. INFRASTRUCTURE

Major Nuclear Research and Business Organizations

China National Nuclear Corporation (CNNC)
(中国核工业集团公司)

- More than 100 R&D and design institutes and subsidiary companies.
- Total more than 100,000 employees.
- Engineering design – the champion of local designs CNP300, CNP600, CNP1000/CNP1500, CNP1000 lifetime 60 yeas targeting <$US1,300/installed kW.
- Plant construction.
- Uranium exploration and mining.
- Uranium enrichment.
- Fuel fabrication and reprocessing.
- Waste disposal.
- Nuclear components and instrument manufacture.
- An investor in all nuclear plants.
- Designed and built Qinshan units 1-3 and in full control of Qinshan operation.
China Nuclear Engineering & Construction Corporation (CNEC) (中国核工业建设集团公司)

- The largest State owned nuclear power investor.
- The largest nuclear power operating organization.
- 30,000 employees.
- Nuclear power plants – plant site design, survey, project management, material management.
- Nuclear and Civil engineering.
- Defense engineering.
- Other large industrial projects.
6. INFRASTRUCTURE
Major Nuclear Research and Business Organizations

- **Chinese Academy of Sciences (CAS)**
 More than 17 research institutes – directly involved in or dedicated to nuclear fundamental research programs.
 - FBR development.
 - Fusion and hybrid fusion-fission development.

- **Major Universities**
 Tsinghua University.
 Shanghai Jiaotong University.
 Xi’An Jiaotong University.
7. GENERATION IV PROGRAM
Fast Neutron Breeder Reactor

- Fuel efficiency – 60-70%.
- 1960s – the FBR program started with a zero-power reactor.
- 2020 – a full-scale prototype reactor into operation.
- 2035 – FBR technology ready for commercial deployment.
- 2050 beyond – FBRs evolved to be the main nuclear power source.
7. GENERATION IV PROGRAM

Fast Neutron Breeder Reactor (FBR)

MAIN DESIGN PARAMETERS OF FAST BREEDER REACTOR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Power</td>
<td>65 MW</td>
</tr>
<tr>
<td>Thermal Power</td>
<td>20 MW</td>
</tr>
<tr>
<td>Fuel Type</td>
<td>UO2 (64.4% enriched) Mixed-oxide (MOX)</td>
</tr>
<tr>
<td>Coolant</td>
<td>Sodium</td>
</tr>
<tr>
<td>Core inlet temperature</td>
<td>360°C</td>
</tr>
<tr>
<td>Core outlet temperature</td>
<td>530°C</td>
</tr>
<tr>
<td>Core height</td>
<td>45 cm</td>
</tr>
<tr>
<td>Core diameter</td>
<td>60 cm</td>
</tr>
<tr>
<td>Fuel element linear power (max)</td>
<td>430 W/cm</td>
</tr>
<tr>
<td>Max burn-up (target)</td>
<td>100 MWd/kg -</td>
</tr>
<tr>
<td>Neutron flux</td>
<td>3.7×10^{15} n/cm²·s</td>
</tr>
<tr>
<td>Reactor lifetime</td>
<td>30 years</td>
</tr>
</tbody>
</table>
7. GENERATION IV PROGRAM

Fast Neutron Breeder Reactor

- Experimental reactor (65 MW) under construction
- 2006 - the main vessel passed testing
- 2008 – due to achieve criticality
- 2010 - produce electricity.
7. GENERATION IV PROGRAM

HTR-10

- The PBMR: HTR-10.
 2000 – reached criticality.
 2003 – reached full power and connected to the grid.
- Efficiency – 47%, Inherent passive safety feature.
- Temperature – 700-900°C, 60 years lifetime.
- Cogeneration – power + H2 (or power + other purchases).
- Operational - 2010.
8. FUSION

• China’s largest controlled fusion device.
• Both for fusion and hybrid fusion-fission research.

CAS Southwest Institute of Physics
8. FUSION

• 2002 – HL-2A Tokamak into operation.
• HL-2A – The first divertor Tokamak in China.
8. FUSION

HT-7 Superconducting Tokamak

- Prior to HT-7 Superconducting Tokamak - HT-6B, HT-6M Tokamaks.
- 1994 – completion HT-7 Superconducting Tokamak.
- The first of the kind in China, the fourth device in the world.
- 2004 – HT-7 Plasma achieved 10 million°C in the center for 120 s.
- 2006 - HT-7U full superconducting Tokamak - Construction completed - non-circular section Tokamak.
- HT-7U – The same principle at smaller scale, similar design to ITER.
8. FUSION

Hybrid Fusion-Fission Reactor

- 20 years – Conceptual Design and R & D Activities.
- Subcritical Fusion System.
- Transmuting long-lived radioactive nuclear waste.
- Producing Fuel.

CAS Southwest Institute of Physics
CAS Institute of Plasma Physics
9. OTHER ACCOMPLISHMENTS

Nuclear Submarine

1970 – Launched the China’s first submarine.
The fifth country to have nuclear submarines.
9. OTHER ACCOMPLISHMENTS

Chasuma Phase-I (Unit 1), Pakistan

1991 - Signed the contract (300 MWe).
1993 - Started construction.
2000 - Connected to the grid.
9. OTHER ACCOMPLISHMENTS

Chasuma Phase-II (Unit 2)-Pakistan

2004 - Signed contract (CNNC with PAEC).
2011 – Expected to connect to the grid.
9. OTHER ACCOMPLISHMENTS

Nuclear Heating Reactor (NHR-5)

- Program started in the early 1980s,
- NHR-5 reached full power in 1989.
- A vessel type light water reactor.
- Conducted heat-electricity cogeneration, air-conditioning and desalination.
- A 200 MW Nuclear Heating Reactor (NHR-200) developed.
- The NHR-200 demonstration plant planned to be built as a heat source for seawater desalination.
9. OTHER ACCOMPLISHMENTS

• 1989 – 35 MeV Proton linear accelerator went into service.
• China’s first 35 MeV Proton linear accelerator.
• Mainly for short-lived isotope production for medical applications.
• Research on neutron cancer treatment.

CAS Institute of High Energy Physics
9. OTHER ACCOMPLISHMENTS

The Beijing Electron-Positron Collider

• 1988 - Successfully commissioned and demonstrated.
• Mainly for Physics and material research.

Developed and Constructed at the CAS Institute of High Energy Physics
9. OTHER ACCOMPLISHMENTS

北京正负电子对撞机光荣退役

The Beijing Electron-Positron Collider

• 2004 – BEPC mission completed after 15 years service.
• Currently under refurbishment.
10. OTHER MILESTONES

• 1958 - A 7-MW Heavy Water Research Reactor into Operation
• 1958 - 1.2 m diameter, 12.5 MeV cyclone accelerator went into service.
• 1981 - China's first large-scale self-design and self-made research high-throughput and high-power (125 MW) reactor into operation.
• 1982 - China's first self-designed, self-made proton linear accelerator construction completed at the CAS Institute of High Energy Physics.
• 1983 - Entered IAEA and applied safeguards to nuclear exports to Algeria, Chile, Ghana, Nigeria, Pakistan and Syria.
• 1988 – China’s largest heavy ion physics laboratory equipment - Lanzhou heavy ion cyclotron into operation.
• 1993 – Two free-electron laser devices "SG-1" and BFEL into operation for fundamental and fusion research.
SUMMARY

• A huge demand and potential for nuclear powder.
• Strong government commitment to significantly increase nuclear power capacity.
• Keen on fuel efficient technology due to limited U reserve.
• Engaged in a large range of technologies including Gen I, II and III as well as fuel enrichment and fuel cycle.
• Among the leading edge in technologies of generation IV and fusion reactors, including FBR, HTR, nuclear H2-power cogeneration, Fusion and hybrid fusion-fission reactors.
• Large manpower and large number of organizations involved.
• Technology localization policy: R&D, design & engineering as well as manufacturing and constructions.
ACKNOWLEDGEMENT

• Thanh To – Marketing and Competitive Intelligence, AECL SP
• Martin Nowak - Marketing International, AECL SP
• Xiaolin Wang - Reactor Physics, AECL CRL
• Morgan Brown - Fuel and Fuel Channel Safety, AECL CRL
• George Lim – Safety Review Committee, AECL CRL
Thank You