Fusion Energy: The Prize, The Pathways, The Prospects

Allan Offenberger, Professor Emeritus

Canadian Nuclear Society Presentation, June 2022

With thanks to all for results adapted & used in this overview

The Prize: Realizing Fusion Energy

- Positive for energy demand, environment, economy, sustainability
- Fusion can provide:
 - 1) Clean energy source for heat, electricity, hydrogen
 - 2) Virtually inexhaustible fuel supply
 - 3) No GHG or air pollution (He is the "ash")
 - 4) No risk of nuclear accident (no public evacuation)
 - 5) Highest energy density & ...minimal land impact
 - 6) Best energy payback ratio (EPR) & life cycle assessment
 - (LCA tonnes CO₂/GWHe) of all sources (solar, wind, fission)
- Fusion will become an overarching catalyst for wealth & job creation
- Fusion R&D is proceeding inexorably worldwide

Fusion – Energy Applications

- Base-load electric power generation (on-demand 24/7)
- Production of hydrogen for fuel cells/synthetic fuels
- Heat for chemical processing, etc.
- Desalination of sea-water
- Clean up fission waste
- Production of fissile fuel for fission reactors
- Hazardous nuclear waste processing
- Create new industries
- Fusion-fission hybrids (fission fuel extended, waste burned)
 could be an interim step enroute to pure fusion systems

Key Enabling (& Spinoff) Technologies

- **Heating** (particle beams, electromagnetic waves incl lasers)
- High field magnets (diverse applications)
- High power lasers (diverse applications)
- Precision optics and opto-electronics
- **Photonics** (superseding electronics)
- **Diagnostics** (sensors, instrumentation)
- Additive manufacturing
- **Robotics** (remote handling, line replacement modules)
- Materials & nanotech (lasers, optics, targets, chamber materials)
- Plasma control, data, analysis, etc (AI & computer modeling)
- Fueling, tritium breeding & processing
- Cryogenics
- **Systems engineering** (design, construction, IP)
- Will have large economic impact

Fusion Reactions & Power Generation - requirements for fusion

Fusion reactions require high particle energy (= temperature)

- to overcome Coulomb repulsion of (+ve) nuclei
- temperature for ignition: $T_{ign} \ge 100$ million deg C
- all matter is ionized at high T "plasma" (4th state)

Plasma (ions & electrons) must be confined & heated

- to ignite and maintain burning plasma use 3.5 MeV He+ ions from fusion reaction for self-heating
- Lawson ignition criterion density (n) x time (τ) > min value $n^{*}\tau > 2x10^{20} \text{ m}^{-3} \text{ sec}$

Fusion – Lawson Criterion

Lawson triple product

It's all about heating and confinement of charged particles

- Theory experiment computer simulation enabling technologies – now highly developed
- Mainline approaches magnetic (low n, long τ) & inertial (high n, short τ) confinement
- \bullet Alternative approaches vary n and τ and confinement
- But need more engineering innovation and scaling of manufacturing (tritium, materials, etc.)

Tokamak – Most Advanced Magnetic

Tokamak – Instabilities Limit β

Confinement & power scaling $n^*T^*\tau_E \propto \beta_N B^3 R^{1.3}/q^2$ $P_{fus} \propto \beta_N^2 B^4 R^3/(q^2 A^4)$

Operating & stability limits: density, pressure, β , MHD instabilities, bootstrap current – inter-related

Laser Driver – Most Advanced Inertial

Central Ignition

Requires fuel compression for net energy gain

Uses shaped laser pulse Laser Intensity=500 TW/cm²

Yield ~
$$P_{stag}^2 T_{hs}^2 V \tau$$

~ $U_{imp}^{7.7}$

Hydrodynamic & laser/plasma instabilities limit compression

Magnetic & Inertial Fusion Energy

- Impressive scientific-technical progress many devices built, studied; especially Tokamaks
- Progress has stimulated private sector involvement
- Technical issues remain, e.g. materials, heating, plasma control (instabilities), diagnostics, robotics, cryogenics, tritium fuel breeding, pellet production

MFE-IFE – Recent Results

$\mathsf{MFE}-\mathsf{Scaling}\;\mathsf{JET}\to\mathsf{ITER}$

Note: power Q refers to plasma heat output/input

IFE – Scaling to NIF & Beyond

NIF – 192 beams P = 500 TW Q = 0.7 p*τ = 22 atm sec

IFE requires η*G>10 η=laser efficiency G=target gain

- Advanced solid state lasers will reduce the footprint > 10 times (with high efficiency)
- KrF lasers offer an alternative driver technology with high efficiency and low cost potential
- Both SSL and KrF need demonstration of scaling to high energy

Alternative & Advanced Concepts

- Seek faster or more economically attractive route to commercial fusion - some 3 dozen alternatives have already emerged (magnetic, inertial, alternative)
- Technical issues for all materials, heating, plasma control (impurities & instabilities), diagnostics, cryogenics, robotics, tritium fuel breeding
- Major international programs underway to address technology issues

MFE – Stellarator

Steady-state alternative to Tokamak

Wendelstein 7-X

Companies with fusion goals for 2030's

Commonwealth Fusion Systems

General Fusion

Helion Energy

TAE Technology

IFE – Employ Fast/Shock Ignition

at end of shaped pulse

MFE-IFE Power/Energy Systems

- Magnetic fusion (continuous, power delivery)
 - ~1 W/m³/kPa²; pressure has been limited by B field to <10atm
 - ~1 MW/m³; implies large volume, low density
 - ~1 MW/m² wall irradiance (radiation, charged particles, neutrons)
- Inertial fusion (pulsed, repetitive energy delivery)
 - small volume, high density $\sim 10^{11}$ x higher; pressure >10¹¹ atm
 - short burn time ~10⁻¹⁰ sec
 - operates like a "diesel engine"; implies injection of large # of fuel pellets

MFE-IFE Issues Comparison

- Magnetic fusion
 - lifetime of wall exposed to burning plasma
 - divertor lifetime under heat load
 - tritium fuel breeding
 - operational features & maintenance
- Inertial fusion
 - needs efficient, scalable high energy/average power lasers
 - needs high volume of targets daily production & injection
 - potentially high efficiency & maintainability
 (tritium burnup up to 10x better; maintenance accessibility

The Prospects

- MFE progress Tokamak demo (or alternative?) to follow
- IFE progress recent results promising (demo later)
- Private sector engagement will hasten development
- Financing (public-private) of multi-approaches underway
- Regulatory process not likely to inhibit progress
- Pilot plant possible by mid-2030's requires solution of technology issues (progressing worldwide)
- Energy & economic payoff will be transformative

Next Steps to Net Fusion Energy

- Identify and build capability in advanced technologies requiring longer development time
- Expand university fusion science programs to build capability and meet need for skilled people
- Encourage multi-path approaches versatility essential since commercial success unpredictable
- Design and build systems to develop solutions for materials, T fuel breeding & handling, diagnostics, scaling of manufacturing, etc.
- Establish regulatory governance (especially regarding radioactivity) & support financing of fusion pilot plants