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We have an “existence proof” that ignition in the laboratory is 
possible, but getting ignition has been extremely difficult

§ “Igni>on,” defined as the >pping-point of thermodynamic instability, obtained on August 8, 2021

§ “Scien>fic Breakeven,” i.e. ”Target Gain > 1” obtained on Dec. 4, 2022 and bested on July 29, 2023

§ ”Net energy gain,” i.e. “Engineering Gain > 1” not yet demonstrated

§ Lessons learned:

— Stability control, symmetry control, and 
high compression all more difficult than 
originally envisioned

— More sensi>vity to target quality and 
laser delivery than originally envisioned

— Higher energy has been more useful than 
high peak power

The National Ignition Facility (NIF)

300-400 MJ energy in capacitors

~2 MJ laser 
energy into 
target chamber
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In indirect-drive, the hohlraum, capsule ablator, and laser-pulse 
integrate together to control the implosion

N210808 Total 
Laser Power (TW)

(b)
Peak Power

Picket

(a)

Fill-tube

Capsule

Tent-membrane

Laser entrance 
hole (LEH)

Laser 
entrance 

hole (LEH)
”Starburst” slit

D
ia

gn
os

ti
c 

W
in

do
w

 (o
ne

 o
f t

hr
ee

)

Gold-lined DU 
hohlraum

LEH washer

DT gas
0.45 mg/cc

Cryogenic 
DT fuel

0.25 g/cc

HDC ablator

Trad(eV)

Bang 
time

Late-time 
x-ray drive

Coast time
duration

2nd shock
launched

3rd shock 
launched

1st shock
launched

t(ns)

Heating 
from 
explosion

Fill-tube

(c) (0,0) neutron imager (90,89) x-ray imager (90,213) neutron imager (90,315) neutron imager

(0,0) imager

(90,213) 
imager

(90,89) 
imager

Foot

1

2

3

1) Stability & entropy (“adiabat”)
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Indirect drive is energy inefficient, but we are trading energy for 
energy density since implosions act like “pressure amplifiers”

~200 Mbars

~400 GbarsBetti & Hurricane, Nature Phys. (2016)

Energy/Pressure Budget for NIF Energy Pressure Gain Term

Energy in NIF capacitor banks 300-400 MJ n/a Gengineering

Laser (3⍵ 351 nm) into target 1-1.9 MJ n/a Gtarget

X-rays into capsule surface 150-250 kJ 100-200 Mbar Gcapsule

Energy into DT 10-20 kJ 100-550 Gbar Gfuel

The dramatic loss in energy at different stages of 
ICF operation leads to several different definitions 
of Gain:

- Gengineering = fusion yield / facility energy
- Gtarget = fusion yield / laser energy
- Gcapsule = fusion yield / capsule absorbed energy
- Gfuel = fusion yield / energy delivered to DT
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After a decade of problem solving, for the first time in the 
laboratory ignition and scientific breakeven have been achieved

Nora et al, ensemble 
sims of N210808-like 
implosion

NIF DT sh
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𝟏#
𝟎.𝟎
𝟕𝒙

𝒙 =

Explosive increase 
in gain from 
thermonuclear 
instability

𝑮𝒇𝒖𝒆𝒍~𝟏 in 2014

𝑮𝒄𝒂𝒑𝒔𝒖𝒍𝒆~𝟏 in 2021

𝑮𝒕𝒂𝒓𝒈𝒆𝒕~𝟏 in 2022

Progress in “Gain” by incremental improvements 
in a Lawson-like product of DT

𝒑 = plasma pressure 
𝑻 = thermal temperature
𝝉	= confinement time 

2011

Gtarget > 1 is not “net energy gain,” because of facility energy consumption

Hurricane, et al, PRL, submitted 2023
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NIC
(2.5 kJ)

unstable
high LPI

asymmetric

2010-12: Plastic ablator “Low-foot” implosions were designed to 
be high compression and yield ( > 1 MJ), but underperformed*

*Edwards, et al, PoP, 2013; Ma, et al., PoP, 2013; Regan et al, PRL, 2013;  Lindl, et al., PoP, 2014; Clark, et al, PoP, 2016

D. Clark et al., Phys. 
Plasmas 23, 056302 (2016) 

Tion ⍴

𝜸𝑨)𝑹𝑻~
𝒌𝒈

𝟏 + 𝒌𝑳𝝆
− 𝒌𝒗𝒂𝒃𝒍

“Rayleigh-Taylor” (RT)

Unstable where gradients in pressure 
oppose gradients in density

Lesson: Conventional wisdom that 
high-compression/low-adiabat had 
more safety margin was incorrect
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High-foot
(25 kJ)

NIC
(2.5 kJ)

unstable
high LPI

asymmetric

improved stability
increase velocity

2013-2015: High-foot implosions tested if better controlling 
hydrodynamic instability would improve performance

𝜸𝑨)𝑹𝑻~
𝒌𝒈

𝟏 + 𝒌𝑳𝝆
− 𝒌𝒗𝒂𝒃𝒍

Mitigation: Long density 
gradient scale + high 

ablation velocity (𝒗𝒂𝒃𝒍)

Hinkel, et al. PPCF, 2013; Dittrich, et al. PRL, 2014; Park, et al., PRL, 2014; Hurricane, et al., Nature, 
2014; Callahan, et al., PoP, 2015; Ma et al., PRL, 2015; Döppner, PRL, 2015
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HDC/BF
(55 kJ)

reduced LPI
reduced fill tube
diamond ablator

improved symmetry

2015-2018: 2x higher yield achieved using high density carbon 
ablators (instead of plastic) and low helium gas-fill hohlraums

High-foot
(25 kJ)

NIC
(2.5 kJ)

unstable
high LPI

asymmetric

improved stability
increase velocity

Divol, et al, PoP, 2017; LePape, et al, PRL, 2018; Berzak-Hopkins, et al, PPCF, 2018; 
Casey, et al, PoP, 2018; Baker, et al, PRL, 2018; Thomas, et al., PoP, 2020 

Implosions seemed “stuck” at T ~ 5 keV 

PPCF, 61, 014033 (2018)

𝑹𝒉𝒔

𝒎𝒔𝒉𝒆𝒍𝒍

Need more hotspot 𝝆𝑹𝑻	~	𝑷𝑹	~𝒎𝒔𝒉𝒆𝒍𝒍𝒗𝒊𝒎𝒑
𝟐

𝑹𝒉𝒔
𝟐

low-adiabat + 
low velocity 
(~330 km/s)

high-adiabat + 
high velocity 
(~400 km/s)
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Felt that 𝒗𝒊𝒎𝒑 and 𝑹𝒉𝒔 were already near limits due to hydro-
instability, so only design knob left was to increase 𝒎𝒔𝒉𝒆𝒍𝒍

But if we increase 𝒎𝒔𝒉𝒆𝒍𝒍 without increasing energy coupling, we reduce 𝒗𝒊𝒎𝒑 and convergence

Radius increased
Thickness ~ same to start
Thicker later w/ more coupling

Slightly increased A-RT risk

Radius and Thickness increase 
in the same proportion

Risk with new hohlraum, but 
low A-RT risk

High Yield Big Radius 
Implosion Design* (HYBRID)

HotThickHydroscale (e.g. Iraum+)

All need symmetry control otherwise the energy delivered to the hotspot is diminished

Nominal capsule geometry

Inner (or outer) radius ~same, but 
thickness increased

Hot hohlraum (risky) for ~same velocity but 
A-RT stability much better

* Hurricane, et al, PPCF, 2018/2019 & Hurricane, et al, PoP, 2019; +Robey, et al, PoP, 2018
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Implosion symmetry control is important, because it wastes shell 
KE, that could have heated & compressed the fusion fuel
Asymmetric implosion abstracted to pistons

Center-of-mass (COM)
motion ~ hotspot velocity

𝒗𝑪𝑶𝑴

𝒗𝒊𝒎𝒑 𝒗𝒊𝒎𝒑

𝒑

hot
plasma

𝒏𝑹𝑲𝑬 =
𝒗𝒄𝒐𝒎𝟐

𝒗𝒊𝒎𝒑𝟐 =
𝝆𝑹𝒎𝒂𝒙 − 𝝆𝑹𝒎𝒊𝒏
𝝆𝑹𝒎𝒂𝒙 + 𝝆𝑹𝒎𝒊𝒏

𝟑𝑫∗
𝟏
𝝆𝑹

)𝟏

𝝆𝑹

Mode-1 
classical 
mechanics 
model

Hurricane, et al, PoP, 2020; Rinderknecht, et al., PRL, 2020; Casey, et al, PRL, 2021; MacGowan, et al, HEDP, 2022; 
Mode-1 Tion asymmetry work by Spears, et al, PoP, 2014; Schlossberg, et al, PRL, 2021
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RKE Simulations:
▲   Burn-off LF from Kritcher, et al., PoP, 2014
◼   Burn-on LF from Kritcher, et al., PoP, 2014
⚫   Burn-on HF from Kritcher, et al., PoP, 2016

Burn-off piston model

Burn-on piston model

𝑌
𝑌!"

𝒏𝑹𝑲𝑬𝒀𝒏𝒐)𝒃𝒖𝒓𝒏
𝒀𝟏𝑫

= 𝟏 − 𝒏𝑹𝑲𝑬 𝒂 with 𝝈𝒗 ~𝑻𝒂

* Area Weighted Harmonic Mean (WHM): Hurricane, et al, PoP, 2022; Woo and Betti, PoP, 2021
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We need to maintain short “coast-times” in order to minimize the 
implosion deceleration time, maximizing hotspot pressure & power

Hurricane, et al, IFSA Proc, 2016BT

𝑷
𝒔𝒕
𝒂𝒈
(𝑮
𝒃𝒂
𝒓)

This tactic was 
subsequently used on 
many occasions including 
the burning plasma, 
ignition, and target gain > 1 
shots

Effect on 𝝆𝑹 was previously noted: Zylstra, PoP (2014); Landen, PoP, (2012)

Experimental observation

Optimal coast-time << hohlraum cooling time

Which is better? Adding energy 
with more power or more duration?

co
as

t-t
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e

High-foot for 
A-RT stability

Hurricane, et al, PoP, 2017; Hurricane, et al, PoP, 2022 
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Significantly improved understanding of the levers controlling 
laser indirect drive implosion symmetry obtained by 2018

Callahan, et al., PoP, 2018; 
Ralph, et al, PoP, 2018

Legendre mode-2 
(“P2”) empirical 
scaling:

Cross-beam energy transfer 
(CBET) with low gas-fill: 

A. L. Kritcher, et al Phys. Rev. E  98, 053206 (2018); 
L. Pickworth, et al, PoP (2020)

∆𝜆 = 0Å ∆𝜆 = 1Å

𝒙𝒃𝒖𝒃𝒃𝒍𝒆~
𝑬𝒑𝒊𝒄𝒌𝒆𝒕
𝝆𝒈𝒂𝒔

𝒕𝒍𝒂𝒔𝒆𝒓
𝑬𝒑𝒊𝒄𝒌𝒆𝒕

𝑨𝒐𝒖𝒕𝒆𝒓𝝆𝒈𝒂𝒔
𝒕𝒍𝒂𝒔𝒆𝒓
𝑹𝒉𝒐𝒉𝒍

𝒓𝒄𝒂𝒑
𝑹𝒉𝒐𝒉𝒍

“Gold bubble” ingress:
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2018-2020: With a better understanding of the levers on capsule 
and hohlraum control, we scaled up capsule radius, but ...

HyB
(32 kJ)

Up energy coupling

HDC/BF
(55 kJ)

reduced LPI
reduced fill tube
diamond ablator

improved symmetry

High-foot
(25 kJ)

NIC
(2.5 kJ)

unstable
high LPI

asymmetric

improved stability
increase velocity

Braun, et al., Nuclear Fusion, 63, 2022; Zylstra, et al., Phys. Plasmas, 2020 (Hybrid-B) 

... surprised by capsule defects that cost energy

𝑲𝑬𝒎𝒊𝒙 ≈ 𝑲𝑬𝒏𝒐)𝒎𝒊𝒙𝒁𝟐
𝟎.𝟑

Ignition threshold 
moves to higher 
energy:
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In 2019, both Hybrid-E and Iraum were renewed attempts at 
larger capsules, 1.9 MJ NIF, and different hohlraum tactics

HyE/Iraum
(170 kJ)

Burning Plasma

HDC/BF
(55 kJ)

reduced LPI
reduced fill tube
diamond ablator

improved symmetry

High-foot
(25 kJ)

NIC
(2.5 kJ)

unstable
high LPI

asymmetric

improved stability
increase velocity

“Once a burning plasma was achieved, 
ignition was not a matter of if but when”

- Betti, Nature, 2022

Both worked and obtained a burning plasma (e.g. Betti, et al, PRL, 2015)
Zylstra, et al., Nature (2022); Kritcher et al, Nature Phys. (2022); Ross, et al, arXiv (2022)

Changes:
- Reduced LEH size
- Adjustments to 
symmetry control
- Yet lower coast-time
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12 years of experimental effort to obtain fusion ignition (on 8/8/21) 
and target energy gain (on 12/4/22) by problem-solving in steps

Burning

Ignition & 
Capsule gain

Target Gain

Alpha-heating & 
Fuel Gain

Low-foot
High-foot
HDC
Bigfoot
Hybrid-B
Iraum
Hybrid-E

2010

The 
NIC 
begins

Threshold of Burning

+8
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Abu-Shawareb, et al (Indirect Drive ICF Collaboration), PRL, 2021; Kritcher, et al, PRE, 2021; Zylstra, et al, PRE, 2021
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Outstanding problem: materials appear s\ffer than models expected 
and higher compression is needed for increased burn efficiency

theory

Figure from: Landen, et al., PoP, 28, 042705 (2021)

𝝓 ≈
𝝆𝑹𝒉𝒔

𝝆𝑹𝒉𝒔 + 𝟕

Fraction of DT fuel burned:

Fraley, et al., Phys. Fluids, 17, 1974 

The end of the beginning...there is more work to do!

Record so far ~ 5%

~33% usually assumed 
for IFE purposes0.010
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Adapted from Hurricane, et 
al., Rev. Mod. Phys, 2022

NIF DT experiments fuel gain vs. total areal densityCompression: experiment vs. expectation

Leading hypothesis for problem is (still) hydro-instability
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We have an “existence proof” of fusion igni\on and scien\fic 
breakeven (i.e. target gain >1) but prac\cal challenges exist
§ Low adiabat designs have yet to work as desired

— Leading hypothesis is instability control at the fuel-ablator interface
— Forces us to work at high adiabat which implies lower potential gain

§ High implosion velocity and low coast (extended duration of late-time x-ray drive) are very effective, if the implosion is not 
compromised by other degradations
— More energy to target is highly desirable in order to “pay” for symmetry and mix energy “costs”

§ Symmetry control has been very hard to manage
— Symmetry of the shell (fuel + remaining ablator) areal density is the driving physical factor

— Favors shorter laser pulses, low hohlraum gas fill (for LPI), and larger case-to-capsule ratio hohlraums
• Opposite of what you want for IFE!

§ Hydro instability and mix are manageable to a degree, but are still a limiting factor

§ Engineering control (of laser and targets) is extremely challenging

§ Keep in mind 1 kWh (kilowatt-hour) = 3.6 MJ and average US household energy use is 30 kWh per day, so a long way to go for practical 
fusion energy
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