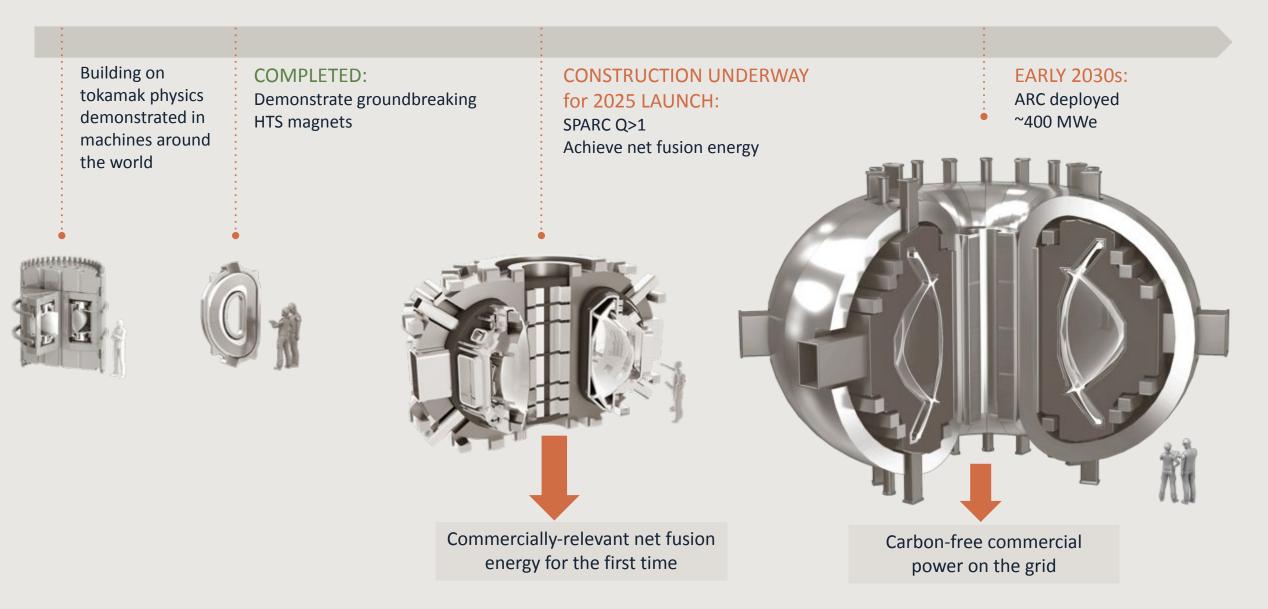
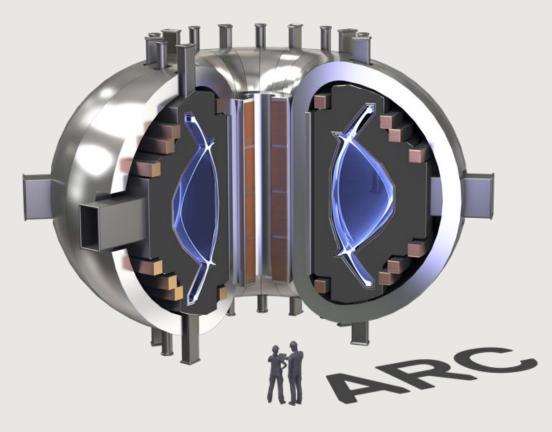
Commonwealth Fusion Systems' High-Field Path to Fusion Energy

CFS is on a path to deliver commercial fusion energy

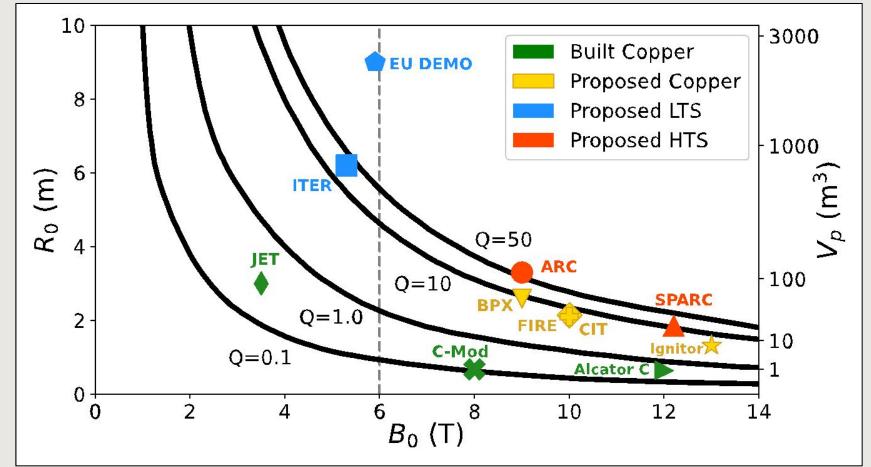

- Commonwealth Fusion Systems was founded in 2018
- Spun out of MIT with the goal of commercializing fusion energy to combat climate change
- Raised more than \$2 billion
- Built a high caliber, diverse team from startups, industry, and academia
- >600 employees and >100 contractors

High-field tokamak path to fusion energy



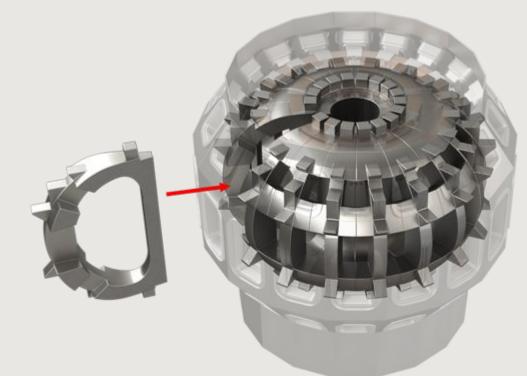
CFS' fusion pilot plant: ARC

ARC is a high-field, standard aspect ratio tokamak


- High-field: $B_0 = 11.5 \text{ T}$, $I_p = 10.1 \text{ MA}$
- Compact size: R₀=4.08 m, a=1.06 m
- Standard aspect ratio: R₀/a=3.85
- ICRF heated: <25 MW
- CS-pulsed: 15-minute flattop
- Conservative physics: $H_{98,y2}$ =1.0, β_N =1.7, f_G =0.85
- High-power: Q=50, P_{fus} =1 GW, P_{e} =0.4 GW
- Tungsten first-wall
- Demountable HTS magnets
- Liquid immersion FLiBe molten salt blanket

High magnetic field enables smaller machines

- 170+ tokamaks gives solid physics foundation for prediction of machine performance
- Field and size are major design levers for increasing Q
- Low-temperature superconductors were limited in magnetic field, result in large machines
- Copper was the only option to go to high field, with many high-Q machines designed, until now...


Other device data from [Parker et al. 1985, 1988; Hutchinson 1989; Neilson 1992; Coppi et al. 1999, 2001; Keilhacker et al. 2001; Meade 2002b; Shimada et al. 2007; Sorbom et al. 2015; Federici et al. 2018]

Fusion relevant high field magnets demonstrated


- In September 2021, CFS and MIT built and tested a full-performance, nearly full-scale, HTS fusion magnet
 - It was designed and built it in 3 years, demonstrated 20.1 Tesla on coil
 - Retired DC operational risks of "no-insulation" HTS magnets (manufacturing, stresses, E&M, cooling, etc.)
 - Destructively quenched to validate models, learned a lot, incorporating into SPARC TFs and Quench Model Coils
 - Papers on tests publishing March 2024, IP protection in process on quench learnings

Also developing high-field insulated HTS magnets

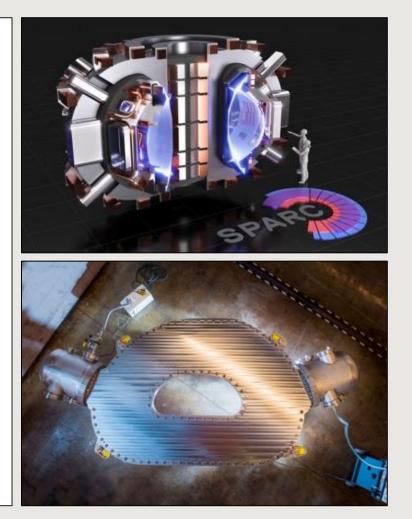
- Based on VIPER cable published in 2020 in Superconducting Science and Technology
- HTS monolithically soldered into copper former for improved thermal, electrical, and structural performance
- Tested in SULTAN to meet SPARC requirements
- 0.3% axial strain and >1,000 cyclic loads at 382 kN/m with <5% stable degradation after 30 cycles
- Novel use of insulation reduces AC heating losses by more than 20x
- Testing qualification coils for full-scale Central Solenoid Model Coil, successful layer test this past summer, including quench detection (3% false positive, 0% false negative)

Magnets enable SPARC: a compact, high-field tokamak designed to achieve net energy gain in DT plasmas

- Designed based on the same physics basis as ITER, but high field reduces size
- Initial operation aims for Q>1, but designed to achieve Q=11 and P_{fusion} = 140 MW
- Physics basis published in 2020 in the Journal of Plasma Physics
- SPARC is under construction now in Devens, MA

Overview of the SPARC tokamak

A. J. Creeby ^(h), M. J. Greenwald ^(h), S. B. Ballinger², D. Brunner¹, J. Canik¹,
J. Doody², T. Fulóp ^(h), D. T. Garnier², R. Granetz², T. K. Gray¹, C. Holland¹,
N. T. Howard², J. W. Hughes ^(h), J. H. Irby², V. A. Izzo⁶, G. J. Kramer²,
A. Q. Kuang ^(h), B. LaBombard⁴, Y. Lin ^(h), B. Lipschulz⁴, N. C. Logan¹,
J. D. Lore¹, E. S. Marmar², K. Montes², R. T. Mumgard¹, C. Paz-Soldan ^(h),
C. Rea ^(h), M. L. Reinke⁴, P. Rodriguez-Fernandez ^(h), K. Sarkimakl^(h),
F. Sciortino², S. D. Scott¹, A. Snicker²⁰, P. B. Snyder², B. S. Nortom⁴,
R. Sweeney⁽ⁱ⁾, R. A. Tinguely², E. A. Tolman², M. Umansky⁽ⁱ⁾, O. Vallhagen⁴,
J. Varje⁽ⁱ⁾, D. G. Whyte², J. C. Wright², S. J. Wukitch², J. Zhu²


¹Commonwealth Fusion Systems, Cambridge, MA, USA ²Plasma Science and Pusion Center, Masachusetts Institute of Technology, Cambridge, MA, USA ³Oak Ridge National Laboratory, Oak Ridge, TN, USA ⁴Chalimers University of Technology, Goubeeng, Sweden ⁵University of California – San Diego, San Diego, CA, USA ⁶Fiai Las, San Diego, CA, USA ⁷Princesson Plasma Physics Laboratory, Princeton, NJ, USA ⁸York Plasma Institute, University of York, Ikedington, York, UK ⁹General Atomics, San Diego, Finland ¹⁰ORISE, Oak Ridge National Laboratory, Oak Ridge, TN, USA ¹¹Lawrence Livermore National Laboratory, Livernore, CA, USA

(Received 18 May 2020; revised 9 September 2020; accepted 10 September 2020)

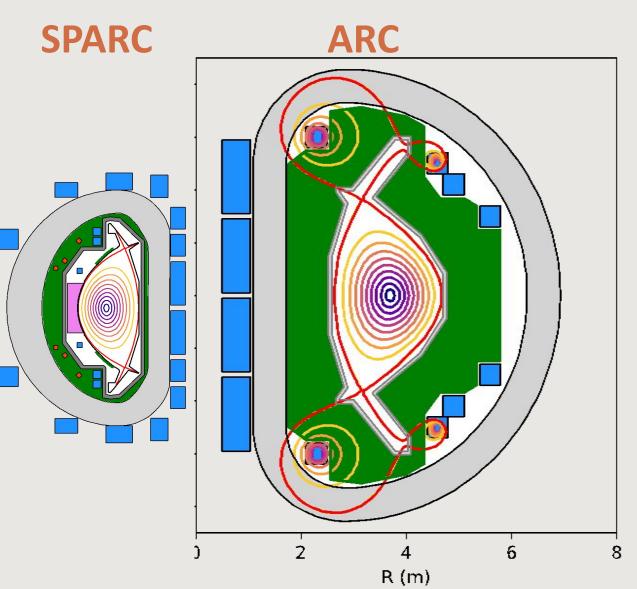
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B₀ = 12.2 T), compact (R₀ = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions ($H_{\rm M,c2} = 0.7$) and, with the nominal assumption of $H_{\rm M,c2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\rm hom} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (ψ_0) $\approx 3 \times 10^{50}$ m⁻¹), high temperature ($T_0 \geq 7$ KeV) and high power density

* Email address for correspondence: alex@cfs.energy

miss.miss.arg/10.101100022371820001217 Published online by Cambridge University Press

SPARC construction proceeding at a rapid pace from greenfield in 2.5 years ago to today:

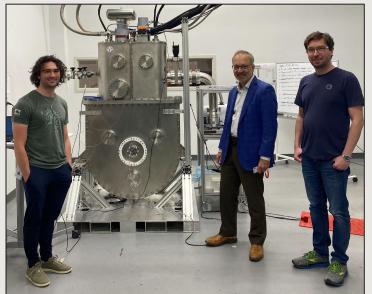
SPARC manufacturing and procurement are in progress


- In house magnet production
 - All HTS is ordered, >40% on site now
 - First TF in production
 - HTS cabling line in final commissioning
 - All magnets are tested at temperature and current before SPARC installation
- Long lead procurements from vendors
 - >60% of all orders placed
 - Vacuum vessel, cryoplant, power supplies, plasma facing components, etc.
 - First systems arriving at SPARC now

SPARC operation directly informs ARC design

- Molten salt blanket and demountable magnets enables ARC to be a flexible platform
- Try different vacuum vessel and plasma-facing component shapes and materials
- Design of ARC vacuum vessel and plasma-facing components can be held open until late in the process, wait on results from SPARC
- Input from core performance, core-edge-boundary integration, disruptions, and diagnostics/control

Ramping up design and R&D for ARC



- Much of the design of ARC is similar to SPARC, "hit the ground running" using the same team and tools developed on SPARC for ARC
- ARC magnets are being designed to the same rules as the magnets we're building for SPARC
 - HTS joints at the cable level demonstrated, need to scale to whole magnets
- Other major R&D areas
 - Fusion nuclear materials
 - FLiBe molten salt blanket
 - Tritium processing
 - Maintenance: Apply best-practices from other industries (aerospace, fission, etc.)
 - Diagnostics: Find solution space between what can be fielded in a fusion environment and what's needed for control

CFS is working with public programs on it's path to ARC

- Working on basic R&D goals to help inform CFS designs:
 - Plasma physics: disruptions, core-edge, energetic particles, divertor Diagnostics: neutron cameras, lifetime and survivability
 - Fusion nuclear materials: High-strength alloys
 - Tritium and blanket science and technologies: Breeding, separation
- CFS supports growing public-private partnerships
 - Grantee in existing and new US DOE public private partnerships, including Milestone program
 - Framework agreements with public institutions in UK and Europe, deepening relationships across entire development cycle
 - Advocate of commercially relevant (~10-year) timelines
- Providing direct R&D support with unique capabilities
 - CFS is designing, manufacturing HTS magnets for public-funded programs
 - Finding ways to support public research on SPARC

Magnetic mirror HTS coil designed, built by CFS for Realta Fusion under ARPA-E funding

Non-planar stellarator HTS coll prototype from Type One, MIT, CFS collaboration

Join CFS in our pursuit of fusion energy

Contact CFS' Open Innovation team <oi@cfs.energy> to see how we can collaborate together

Or, with >60 open roles, apply to directly join our team: www.cfs.energy/careers