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“What important truth do very few people agree with you on?”

— Peter Thiel, Zero to One: Notes on Startups, or How to Build the Future

How? Electrostatic fusion using very high voltages in a small compact form factor 10’s of cm in diameter

What is new here? Electrons co-rotating with ions in “ExB” fields is the key to unlocking small scale fusion.

1. Electrons mitigate “space charge effects” enabling a high plasma density

2. Co-rotating electrons are like a tail wind for ions allowing them to burn longer at high fusion energies
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Why we’re here.

Humanity won’t reach Net Zero Greenhouse Emissions by 2050 without fusion power.
Everything that is powered needs to decarbonized, from power grids to maritime transport,

aviation and the military.

Most fusion companies are tackling the major opportunity that is the grid-scale electricity.

Avalanche intends to power everything else.

Avalanche Energy — Proprietary and Confidential
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Fusion Reactor Size determines Capital, Headcount and Development Speed

Built in years, iterate in months, civil engineering project Built in weeks, iterate in days, mass produce at factory scale

Application: Grid

Application: Mobility and Distributed Energy
Most approaches are thermonuclear.

Avalanche is developing world’s smallest

Reactor size varies from house to warehouse scale fusion microreactor.

Capital costs to commercial operations >S1B Capital costs to commercial operations <$1B

Headcounts 100’s to 1000’s of people Headcount <200 of people

Estimated first commercial operations >6 years Estimated first commercial operations <6 years

1GW 10’s MW 10’s kW
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* Potential for small net energy fusion devices
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mple of Fusion Energy Approaches
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Orbitron Fusion Rate Scaling

Particle-in-Cell simulation (Vsim) explored ion density and energy for 6 cm radius Orbitron
300 kV cathode, 30 keV beam, 0.4 Tesla achieved Density 5E19/m3 ECoM D-T 63 keV Te 15 keV

Orbitrons confine non-thermal plasmas: lons are unmagnetized and orbiting electrostatically, electrons ExB

Orbitrons can vary ion collisional energy (voltage, beam energy) independently from average electron energy (magnetic field)
Makes them very interesting devices for exploring fusion plasma parameter space
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Electrostatic & Non-Thermal Fusion Plasma (1/3)

Electrostatic & Non-thermal (non-Maxwellian) fusion plasma is controversial in fusion sciences

“For all possible types of fusion reactors if major particle species are significantly non-Maxwellian
or at radically different mean energies recirculating power will substantially exceed fusion power.”
— Rider (MIT, 1995)

“The very large recirculating power obtained by Rider (1995) is a consequence of the assumption
of particle distribution functions that simplify calculations but have no physical basis”
- Rostoker, Qerushi & Binderbauer (Tri-Alpha, 2003)
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Electrostatic Non-Thermal Fusion Plasma (2/3)

At a high level for D-T plasma the scientific critics can be summarized as two key points:

A) Electrostatic approaches to fusion cannot achieve high ion densities due to space charge effects

B) Electrostatic or Non-thermal (Non-Maxwellian, colliding beam) approaches to fusion cannot
achieve net energy due to excessive Coulomb collision losses
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Electrostatic Non-Thermal Fusion Plasma (3/3)

Much of the previous controversy stems from the modelling assumptions in the reduced order models
used to assess the various fusion concepts ... the real fusion and confinement physics are complicated!

We find the two high-level critics: Space Charge and Coulomb Collisions are valid

BUT the Orbitron also has some unique aspects that address both issues

First-order models to Particle-in-Cell Experimental prototypes
understand the high- —> simulations to —> to anchor the first-order
level Orbitron physics incorporate the models and simulations

complex physics
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Space Charge Density

- Electrostatic fusion critic A) Cannot achieve high ion densities due to space charge
- In Orbitron electrons are introduced and confined via magnetron ExB electron scheme to overcome ion space charge density limits

Fig 4. PIC Simulations showing ion and electron loading into the Orbitron, exceeding space charge limit and ultimately densified plasma
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Particle Density at 0.00e+00s | iteration: 0

Space Charge Density
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Avalanche Energy — Proprietary and Confidential
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. o . Collision Frequencies from NRL Plasma Formulary
Coulomb Collisions: First-Order Model
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Coulomb Collisions: First-Order Model

Orbitron Q. (Fusion Power/Plasma Losses) due to electron Net loss current (mA) for deuterium (D), tritium (T) and electrons (e)

temperature (Te) and deuterium-tritium center-of-mass energy (E_,,) (+ve is a loss to the anode and -ve is a loss to the cathode)
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Coulomb Scattering Collisions: 2.5D PIC Simulation

PIC Simulations initial ion and electron density distribution axial view
le24 le24
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To make computationally tractable simulation is run at densities from
1E25/m3 - 5E23/m3

-0.8
- 0.8

Not possible to resolve plasma frequency or space charge at these densities
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Particle Density at 0.00e+00s | iteration: 0

Coulomb Scattering Collisions
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Starting to explore plasma parameter space for beam energy, Te and Q,,,, Via these PIC simulations
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Seattle, WA Based Lab - ~15,000 sqgft
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Prototype 1: “Neo” 100kV, 0.07T
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Diagnostics Overview

Scintillator w/ Pulse Shape Discrimination (PSD)

- Gives total source neutron flux with high accuracy filtering out
He3 Neutron counter gamma rays \
- Gives real time neutron flux \'
- Operates by thermalizing 2.5
MeV neutrons and measuring™._
ionization pulse from He3 AN
thermal neutron capture

neutrons

gamma rays

Argon Spectroscopy

- Fiber optics embedded in anode
looking at plasma

- Can measure number of Ar+ ions
via measured brightness

- Argon spectroscopy could be
alternate method to confirm
plasma densification with Ar+ ion
and electron confinement in
Orbitron

- Neutron Camera

- Scintillator w/ PSD collimated view to a “pixel” and
locate neutron sources spatially

- Allows discrimination of beam-target fusion in
cathode from beam-beam fusion in space between
cathode and anode

Orbitron Collimator
Pixel 0

X-ray Spectroscopy

- Measuring Bremsstrahlung X-rays
to determine electron energy
distribution (Te) and electron
density (ne) via X-ray power
emitted thru Be window

Pixel 1

Pixel 2

Pixel 3

Pixel 4
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Neutron Energies with Pulse Shape Discrimination

lon Source Off (background neutrons)
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3000 4000
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lon Source on and Orbitron Running

2000

neutron energy (keV)
3000 4000
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n= 11806
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Prototype 2: “Marty” 300kV

High Voltage Feedthrough Prototype 2 “Marty” — first electrostatic fusion device > 200kV

g ‘
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Orbitron Experimental Program Current Status

- Prototype 1 (Neo): Measured fusion neutrons at 100 kV, 0 T (no magnets): 1E4 n/s
- Prototype 1 (Neo) : Working on Improved ion loading + magnets 100 kV, 0.05 T: =1E6 n/s
- Prototype 2 (Marty): Reached 200kV (no magnets) and Targeting 300 kV, 0.3 T during Series A: =1E11 n/s
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Summary

At a high level for D-T plasma the scientific critics of electrostatic fusion can be summarized as two key points:

A) Electrostatic approaches to fusion cannot achieve high ion densities due to space charge effects

We’ve shown via PIC simulation that electron confinement in ExB fields is key to resolving this

We are very close to demonstrating this experimentally on Neo

B) Electrostatic or Non-thermal (Non-Maxwellian, colliding beam) approaches to fusion cannot
achieve net energy due to excessive Coulomb collision losses

In rotating plasmas there may be a spectrum between pure beam-beam to pure Maxwellian that is
interesting for generating fusion energy as indicated by collisional PIC simulations

Demonstrating this experimentally with Deuterium-Tritium fusion is ultimately how we intend to develop
a Q>1 small scale fusion reactor
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Meet the Orbitron

Small scale fusion for mobility applications

Build in months, iterate in days
Small teams focus on specific problems and rapidly iterate

via simulation & two prototypes in our Tukwila lab.

Inertial Electrostatic Confinement
High energy ion beams collide to create fusion plasma
Confine ions via electrostatic fields (inspired by Orbitraps)

Densify plasmas via electrons (inspired by Magnetrons)

Tackling hard to decarbonize applications
From space craft, to unmanned submersible vehicles,

aviation, maritime shipping and distributed energy.

Avalanche Energy — Proprietary and Confidential
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