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Plasmas 

Introduction 

● Plasmas are ubiquitous in nature having different densities and temperatures 

● Fusion plasmas are required to have high temperature  ( >108  K ~ 10 keV ) 
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Fusion Plasma 

Introduction 

● Confining plasma using magnetic field in a torus i.e. the  Tokamak,  is 

the main candidate for achieving fusion on earth 

● Due to collisionless nature, kinetic model (Boltzmann Equation) 

represent the correct behavior of the plasma 

● However fluid model are as applicable in a limited time scales (~ ms) 

and length scales                
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● Continuity equation: 

 

● Momentum equation: 

 

● Energy equation: 

                                                               

                                                    material derivative:   

● Induction equation: 

 

 

                                   

 

 

 

 

Ideal Magnetohydrodynamic Equations 

MHD Model of  Plasma 

𝑑𝜌

𝑑𝑡
+ 𝜌𝛻 · 𝒗 = 0 

𝜌
𝑑𝒗

𝑑𝑡
+ 𝛻 𝑃 +

𝐵2

8𝜋
=
𝑩 · 𝛻𝑩

8𝜋
 

𝑑𝑩

𝑑𝑡
− 𝑩 · 𝛻𝒗 + 𝑩𝛻 · 𝒗 =  

𝑐2𝜂

4𝜋
𝛻𝟐𝐁     ∶         𝐑𝐌𝐇𝐃

0                 ∶         𝐈𝐌𝐇𝐃

 

𝑑𝑃

𝑑𝑡
+ 𝛾𝛻 · 𝒗 = 0 

𝑑

𝑑𝑡
= 𝒗 · 𝛻 +

𝜕

𝜕𝑡
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One-dimensional MHD Eqns  

MHD Model of  Plasma 

● MHD forms a hyperbolic system of 8 equations:  

2 scalar, 3+3 vector equations;   

8 variables: 𝜌, 𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧, 𝑃, 𝐵𝑟 , 𝐵𝜃 , 𝐵𝑧 

● In cylindrical coordinates 1-D reduction: 

𝐵 is along 𝑧-direction 

  𝐵𝑟 = 0, 𝐵𝜃 = 0 and 𝐵𝑧 = 𝐵 

assuming no angular rotation in the plasma (𝑣𝜃 = 0) 

no motion along 𝑧- direction (𝑣𝑧 = 0) so remaining 

velocity is only along r- direction (𝑣𝑟 = 𝑣)  

due to symmetry in 𝜃 and 𝑧 – directions:  

         
𝜕

𝜕𝜃
= 0 and 

𝜕

𝜕𝑧
= 0 

● Problem is reduced into one dimensional in cylindrical 

coordinates  
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● One-dimensional MHD equations in Cylindrical coordinates 

● Non-dimensionalzation to reach in Alfvén time scale 

One-dimensional MHD Equations 

MHD Model of  Plasma 

𝑟 → 𝑟𝑎,   𝑡 → 𝑡𝑎/𝑣𝐴,   𝜌 → 𝜌𝜌𝑜,   𝑣 → 𝑣𝑣𝐴,  𝑃 → 𝑃𝑃𝑜,   𝐵 → 𝐵𝐵𝑎 

  

Alfvén  Speed 𝑣𝐴 = √(𝐵𝑎
2/𝜇0𝜌𝑜),          𝛽 = 𝑃𝑜/(𝐵0

2/2𝜇0) 

𝜕𝜌

𝜕𝑡
= −

1

𝑟

𝜕

𝜕𝑟
𝑟𝜌𝑣   

𝜕𝑣

𝜕𝑡
= −𝑣

𝜕𝑣

𝜕𝑟
−
1

𝜌

𝜕

𝜕𝑟
𝑃 +

𝐵2

2𝜇0
 

𝜕𝑃

𝜕𝑡
= −𝑣

𝜕𝑃

𝜕𝑟
− 𝛾

𝑃

𝑟

𝜕

𝜕𝑟
𝑟𝑣   

𝜕𝐵

𝜕𝑡
= −

𝐵

𝑟

𝜕

𝜕𝑟
𝑟𝑣 − 𝑣

𝜕𝐵

𝜕𝑟
 

𝜕𝜌

𝜕𝑡
= −

1

𝑟

𝜕

𝜕𝑟
𝑟𝜌𝑣  

𝜕𝑣

𝜕𝑡
= −𝑣

𝜕𝑣

𝜕𝑟
−
𝛽

2

1

𝜌

𝜕

𝜕𝑟
𝑃 +

𝐵2

𝛽
 

𝜕𝑃

𝜕𝑡
= −𝑣

𝜕𝑃

𝜕𝑟
− 𝛾

𝑃

𝑟

𝜕

𝜕𝑟
𝑟𝑣   

𝜕𝐵

𝜕𝑡
= −

𝐵

𝑟

𝜕

𝜕𝑟
𝑟𝑣 − 𝑣

𝜕𝐵

𝜕𝑟
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Matrix Form of  One-dimensional MHD Equations 

MHD Model of plasma 

𝜕𝐔

𝜕𝑡
+ 𝐀 𝐔

𝜕𝐔

𝜕𝑟
= 𝐒 𝐔, 𝑟   𝐔 =

𝜌
𝑣
𝑃
𝐵

 𝐒 𝐔, 𝑟 =

−𝜌𝑣/𝑟
0

−𝛾𝑣𝑃/𝑟
−𝑣𝐵/𝑟

 

Λ ≡ 𝜆𝐴 𝑚𝑎𝑥 =
𝐵2

𝜌
+
𝛽𝛾𝑃

2𝜌
+ 𝑣   𝐀 𝐔 =

𝑣 𝜌 0 0

0 𝑣 𝛽 2𝜌 𝐵/𝜌
0 𝛾𝑃 𝑣 0
0 𝐵 0 𝑣

 

● Ideal MHD set of equations can be written in matrix form 

 

 

 

 

 

● Matrix A(U) and its eigen values: 

 

 

 

 

 

 

● Positive roots implies the hyperbolic nature 
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Initial and Boundary Conditions 

● Initial Conditions 

 

 

 

 

 

● Boundary Conditions 

 

 

 

 

𝐵 𝑟, 0 = 1 − 𝛽(1 − 3𝑟2 + 2𝑟3)

𝑃 𝑟, 0 = 1 − 3𝑟2 + 2𝑟3 1 + 𝛿 sin 2𝜋𝑟

  for 0 ≤ 𝑟 ≤ 1  

Constant   𝛿 = 0.1 

𝑟 = 0,
𝜕𝜌

𝜕𝑟
= 0, 𝑣 = 0,

𝜕𝑃

𝜕𝑟
= 0,

𝜕𝐵

𝜕𝑟
= 0  

  

𝑟 = 1, 𝜌 = 0, 𝑣 = 0, 𝑃 = 0, 𝐵 = 1  

MHD Model of  Plasma 
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Numerical Schemes  

● We have compared the stability of three numerical schemes in one 

dimension in cylindrical coordinates 

 

 One dimensional MHD equations  

 Cylindrical geometry  

 Finite Difference Method  

 Explicit time stepping  

 

● The Lax-Wendroff-Retchmyer 

● MacCormack  

● Runge-kutta fourth order 

 

 

 

Numerical Schemes  
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Predicator Step Corrector Step 

  𝑛 + 1 Δ𝑡 

𝑗 −
1

2
 𝑗 𝑗 +

1

2
 

𝑥 

𝑡 

(𝑛 +
1

2
)Δ𝑡 

nΔ𝑡 

𝑗 −
1

2
 𝑗 − 1 𝑗 + 1 𝑗 +

1

2
 

𝑥 

𝑡 

𝑗 

Lax-Wendroff-Retchmyer Scheme 

Numerical Schemes  

PDE: 

Discretization: 

𝑼
𝑗+

1
2

𝑛+
1
2 =

1

2
𝑼𝑗+1
𝑛 + 𝑼𝑗

𝑛 −
Δ𝑡

2Δ𝑥
𝑭𝑗+1
𝑛 − 𝑭𝑗

𝑛  

𝑼𝑗
𝑛+1 = 𝑼𝑗

𝑛 −
Δ𝑡

Δ𝑥
𝑭
𝑗+

1
2

𝑛+
1
2 − 𝑭

𝑗−
1
2

𝑛+
1
2  

𝜕𝑼

𝜕𝑡
+
𝜕𝑭

𝜕𝑥
= 0 

: Predicator Step 

: Corrector Step 
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𝑡 
𝑛 + 1 Δ𝑡 

nΔ𝑡 

𝑗 

𝑥 

𝑡 

𝑗 − 1 𝑗 

𝑥 

MacCormack Scheme  

Numerical Schemes  

: Predicator Step 

: Corrector Step 

PDE: 

Discretization: 

Predicator Step 

𝑈𝑗
𝑛+1 = 𝑼𝑗

𝑛 −
Δ𝑡

Δ𝑥
𝑭𝑗+1
𝑛 − 𝑭𝑗

𝑛  

𝑼𝑗
𝑛+1 =

1

2
 𝑼𝑗

𝑛+𝑼𝑗
𝑛+1 −

Δ𝑡

Δ𝑥
𝑭𝑗
𝑛+1 − 𝑭𝑗−1

𝑛+1   

𝜕𝑼

𝜕𝑡
+
𝜕𝑭

𝜕𝑥
= 0 

𝑗 − 1 𝑗 + 1 𝑗 + 1 

Corrector Step 
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𝑛𝛿𝑡 

j−1 j+1 j 

𝑥 

● Semi-Discritization for spatio-

temporal PDE (Method of Lines):  

 

 First discretized in space, 

obtain ODEs in time 

 

                
𝑑𝑈𝑗(𝑡)

𝑑𝑡
= 𝑓 𝑡, 𝐹𝑗  

 

  Apply RK4 to advance in time 

Runge-Kutta Fourth Order 

𝑛𝛿𝑡 

j−1 j+1 j 

𝑥 

(𝑛 + 1)𝛿𝑡 

Numerical Schemes  

𝜕𝑼

𝜕𝑡
+
𝜕𝑭

𝜕𝑥
= 0 

𝑘𝑛1 = 𝑓(𝑡𝑛, 𝐹𝑗
𝑛) 

𝑘𝑛2 = 𝑓 𝑡𝑛 +
1

2
Δ𝑡, 𝐹𝑗

𝑛 +
1

2
Δ𝑡𝑘𝑛1  

𝑘𝑛3 = 𝑓 𝑡𝑛 +
1

2
Δ𝑡, 𝐹𝑗

𝑛 +
1

2
Δ𝑡𝑘𝑛2  

𝑘𝑛4 = 𝑡𝑛 + Δ𝑡, 𝐹𝑗
𝑛 + Δ𝑡𝑘𝑛3  

𝑈𝑛+1 = 𝑈𝑛 +
Δ𝑡

6
(𝑘𝑛1 + 2𝑘𝑛2

+ 2𝑘𝑛3 + kn4) 
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𝜕𝑢

𝜕𝑡
+  Λ

𝜕𝑢

𝜕𝑟
= 0  

Stability 

Stability Criteria 

 A 𝐬calar linear advection equation with 

advection speed Λ: 

 

 Von-Neumann stability analysis: 

 

 Numerical amplification Factor: 

 

 Lax-Wendroff-Retchmyer or MacCormak 

 

 

 

 

 Runge-Kutta fourth order 

Numerical Schemes  

 G = 1 − C2 + C2 cos𝜙 + 𝑗 −C sin𝜙 ;   𝑗 = −1   

G = 1 − 4C2 1 − C2 sin4(𝜙/2) 
C =

 Λ. Δ𝑡

Δ𝑟
≤ 1  

 G  =  1 − 1
2
C2 sin2𝜙 + 1

24
C4 sin4𝜙 + 𝑗 −C sin𝜙 + 1

6
C3 sin3𝜙  

G = 1 − 1
72
C6 1 − 1

8
C2 sin2𝜙 sin6𝜙 

C =
Λ. Δ𝑡

Δ𝑟
≤ 2 2  

|G| =
𝑢𝑘
𝑛+1

𝑢𝑘
𝑛  ≤ 1 for stability 

𝑢𝑘 𝑥, 𝑡 = 𝑢 𝑘 𝑒
𝑖𝜙 where 𝜙 = 𝜔Δ𝑡 = 𝑘

Δ𝑥

Δ𝑡
 Δ𝑡 
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Numerical Results 

● Effect of Schemes 

● Effect of Courant Number 

● Effect of Grid Refinement 

● Long Time Run 

● Stability 

 

 

 

Numerical Results 
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Effect of Schemes 

Numerical Results 

● LWR, MAC and RK4 schemes can advance more than 4 Alfven time 

scales for grid points 61 and 𝑟 = 0.25 

● LWR suffers from oscillations comparatively earlier and reaches high 

around time ~ 4 𝜏𝑎 

● Similar behavior is observed in time stepping of Magnetic field 

Pressure Vs time Magnetic Field Vs  time 
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Effect of Courant Number 

Numerical Results 

RK4 

● Keeping fixed grid and changing 

Courant Number from C = 0.2 

to C = 0.8  LWR suffers from 

oscillation from the early phases 

● MAC or RK4 are smoother 

MAC LWR 



18/24 D. Nath,  M. S. Kalra and P. Munshi 34th Annual Conference of CNS 2013, Toronto, Canada  

Effect of Grid Refinement 

Numerical Results 

● On increasing the grid points 

again LWR surprisingly have lot 

of numerical instabilities 

whereas MAC and RK4 have 

reached grid independence.  

● C = 0.8 (Kept Fixed) 

LWR MAC 

RK4 
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Long Time Run 

Numerical Results 

LWR: 𝑟 = 0.25 

 

 From 𝑡 = 5 𝑡𝑜 15, burst of instabilities appear in LWR  (C = 0.2,  Grid points = 61) 
D

im
en

si
o

n
le

ss
 P

re
ss

u
re

 

LWR: 𝑟 = 0.75 

MAC: 𝑟 = 0.25 

MAC: 𝑟 = 0.75 
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Radial Distribution 

Numerical Results 

Pressure Vs Radius ( 𝑡 = 50) Magnetic Field Vs Radius (𝑡 = 50) 

Long Run Time 

● A quasi-steady state is reached after t=50 
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Numerical Results 

● The growth of numerical instabilities begins from the edge 𝑟 = 1. 
At  𝑟 = 1 Courant number become high, and if comes out from the 

stability region, makes an scheme numerically unstable 

● Stability regions of LWR (with 𝐶 = 1.0, 0.8)  and RK4 (𝐶 = 2√2) 

● Any scheme to be stable, needs to be operated within its stability region 

 

Radial Variation of Courant 

number for LWR 

Stability Region of LWR and RK4 

Stability and Courant Number 

Stability 
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Numerical Results 

Numerical Dissipation LWR Phase Error for LWR 

Numerical Amplification and Phase Error in LWR 

Stability 
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Numerical Results 

● Less numerical dissipation in RK4 comparatively LWR and MAC 

 Phase error is almost independent of the Courant number 

 Phase error continuously increases towards the high wave numbers 

Numerical dissipation for RK4 Phase Error for RK4 

Numerical Amplification and Phase Error in RK4 

Stability 



24/24 D. Nath,  M. S. Kalra and P. Munshi 34th Annual Conference of CNS 2013, Toronto, Canada  

Conclusion 

 Three widely used discretization schemes applied to a representative 

nonlinear problem arising in the MHD simulation of plasmas: LWR, MAC 

and RK4 

 LWR and RK4 are not suitable schemes for nonlinear hyperbolic MHD 

equation 

 MAC scheme always gave stable results if CFL is satisfied  

 The linear stability conditions are necessary but not sufficient to guarantee 

the numerical stability of these algorithms when applied to a nonlinear 

hyperbolic problem 

 The solution for the transient phase obtained from the three schemes are 

found to differ significantly due to different amount of numerical diffusion 

and dispersion present in each scheme 
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