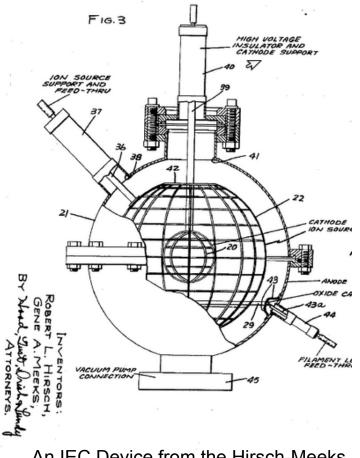
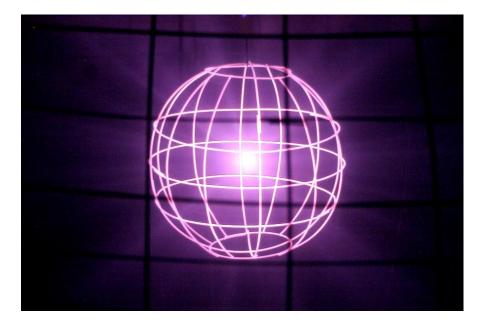
The Design of A Neutron Generator Using The Inertial Electrostatic Confinement of A Deuterium Plasma

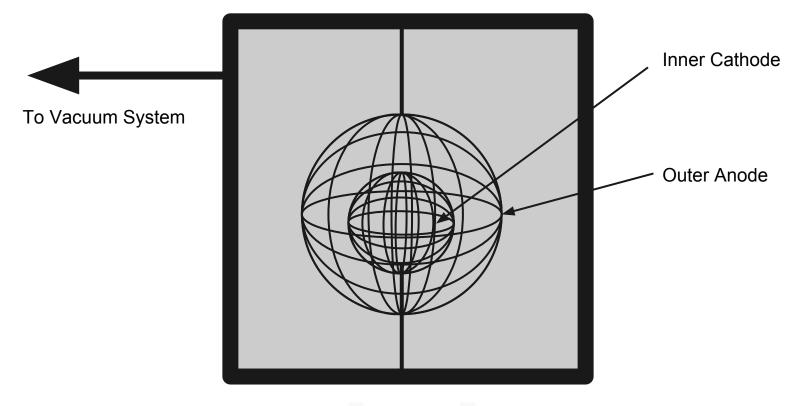

Terry J. Price and Rachid Machrafi



Overview of IEC and Project

- Inertial Electrostatic Confinement (IEC) is a method to generate fusion reactions
 - Dates back early 1950s
 - Widely used in commercial neutron generators
 - Best known design is probably the Farnsworth-Hirsch Fusor Device
- At the start of the project, UOIT had only a small radioisotope neutron generator.
- I've been wanting to build one for years, and I needed a thesis project.

What an IEC Device Looks Like

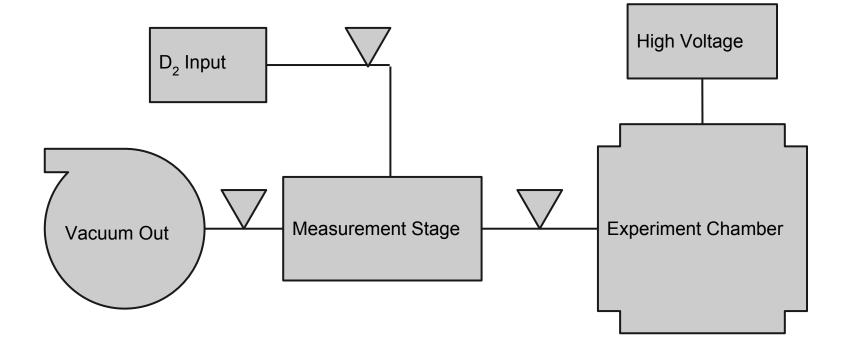


The HOMER Device at UW [2]

An IEC Device from the Hirsch-Meeks Patent [1]

Theory on How IEC Works

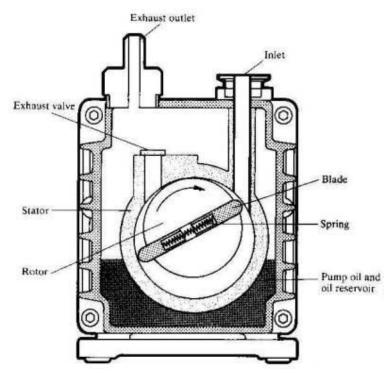
$^{2}D + ^{2}D \rightarrow ^{3}He + ^{1}n (2.45 \text{ MeV})$


Project Goal

Build a working IEC device on a budget.

Components to be Designed and Built

- High Vacuum System
 - Two Stage Pumping
 - Two Stage Measurement
- High Voltage System
 - Cathode power supply
 - Anode power supply
- Gas Fill System
- Neutron Detection System
- Other Components


System Layout

Vacuum Pumps

• Requirements:

- At minimum reach molecular flow regime (Kn > 10)
 Kn = MFP / L
- Remove as much air (impurities) as possible
- Dual stage pumping
 - Two stage rotary vane pump
 10⁻² torr
 - Turbomolecular pump ultimate vacuum of 10⁻⁹ torr

Rotary Vane Pump [4]

Turbomolecular Pump

- Imparts directed kinetic energy onto gas molecules
- Runs at thousands of RPM
- Can only start-up at low pressures (~0.1 torr)

Turbomolecular Pump [5]

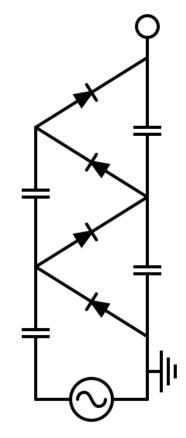
Vacuum Measurement

- Dual stage measurement
 - Pirani gauge atm to 10⁻⁴ torr
 - Ionization gauge 10⁻⁴ to 10⁻⁸ torr
- Signal stages
 - MCU to read everything out

Pirani Gauge[6]

Deuterium Injection System

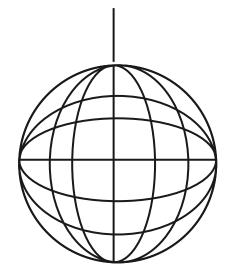
- Measure out D₂ to be injected into the system with pressure gauges
- High accuracy, low pressure regulator on gas inlet


High Voltage System

• Requirement:

- Tens of kilovolts negative on cathode
- Hundreds of volts positive of anode
- Implementation
 - Cockcroft-Walton voltage multiplier for cathode
 - off-the-shelf HV power supply for anode
 - high voltage feedthroughs

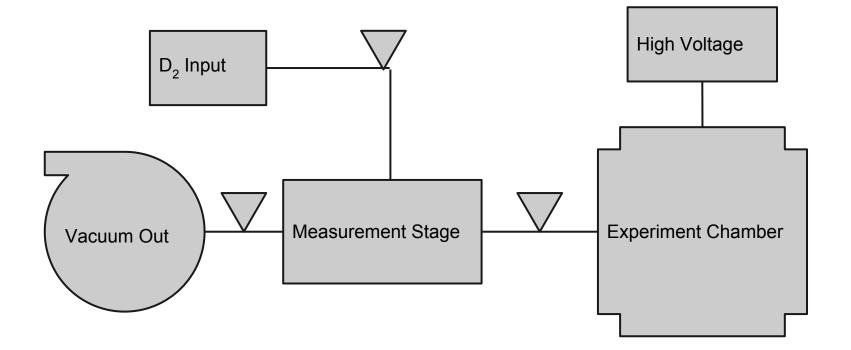
Cockcroft-Walton Voltage Multiplier


- Generates extremely high DC voltages
- Each stage multiplies the voltage by 2
- No need for extremely high voltage parts, voltage across each stage is that of the supply voltage
- Positive or Negative out

Cockcroft-Walton Voltage Multiplier Circuit [3]

Electrodes

- Spherical shape
- Stainless steel for heat resistance
- Tungsten Inert Gas (TIG) weld
- Larger anode hangs from top
- Smaller cathode supported from bottom
- Hole at bottom of anode to let cathode pass through


Neutron Detection System

- Neutrons born fast at 2.45 MeV
- Need to thermalize the neutrons
 use paraffin
- Helium 3 detector
- Pulse Corona Boron tubes
 - USSR era army surplus

Other Components

- Something to build the thing on
- Water cooling for turbomolecular pump
- Radiation protection and safety

IEC Device Operation

Testing

- Helium for initial tests
- Hydrogen to test confinement
- Deuterium to generate neutrons

Project Milestones

- April 2012: First asked if I could take on this project
- June 2012: Met Blair Bromley
- July 2012: Procured voltage multiplier
- August 2012: Got lab space
- September 2012: Surplus Vacuum Chamber from NRCan
- October 2012: Shipment of surplus high vacuum equipment from CRL

Project Milestones

- January 2013: Procured various HV components
- February 2013: More lab space
- April 2013: CNS Undergraduate research scholarship
- May 2013-Present: More HV equipment procurement

Works Cited

[1] R. Hirsch, G. Meeks "Apparatus for Generating Fusion Reactions" US Patent 3530497, 1968

[2] University of Wisconsin (online) "Inertial Electrostatic Confinement Fusion" http://iec.neep.wisc.edu/ May 25, 2013

[3] Wikimedia "Cockcroft-Walton Voltage Multiplier" (online) May 26, 2013 <u>http:</u> //commons.wikimedia.org/wiki/File:Cockcroft_Walton_Voltage_multiplier.svg

[4] ETA Film Technology Inc. "Optical Thin Film Deposition Technology History" (online) May 26, 2013 <u>http://www.etafilm.com.</u> <u>tw/Thinfilm_filter_Deposition_History.html</u>

[5] Wikimedia "Turbomolecular Pump" (online) May 26, 2013 <u>http://commons.</u> wikimedia.org/wiki/File:Cut_through_turbomolecular_pump.jpg

[6] Brooks Automation "Convectron 275 Pirani Gauge" <u>http://www.brooks.</u> <u>com/products/gauges-modules-controllers/vacuum-gauges/275-convectron-gauges</u> (online) May 26, 2013