Update on Fast Ignition Fusion Energy

Department of Electrical and Computer Engineering University of Alberta

Presented at the Canadian Workshop on Fusion Energy Science and Technology Ottawa, October 18, 2015

Overview

- Introduction to Laser Fusion Approaches
- Advanced Ignition Techniques
 - Fast Ignition and Shock Ignition
- Electron Fast Ignition Status
- Proton Fast Ignition Status
- University of Alberta Experiments
- The Way Forward
- Conclusions

Bringing the Sun to Earth

Fusion the Ultimate Energy Source

http://photojournal.jpl.nasa.gov/catalog/PIA03149

Deuterium Based Fusion

1 part in 6500 of all hydrogen is in the form of deuterium

3 water bottles of DT water fuel and 400 helium balloons ash per day for a GW reactor

Lawson Criterion for Net Energy Yield

Requires very elevated temperatures ~100,000,000 K (~10keV energy per particle)

Requires enough burn time

Lawson Criterion for net release of more energy than heating energy

 $n \tau \sim 2 \times 10^{14} \text{ s cm}^{-3}$

n = ion density, τ = confinement time

Laser Fusion uses high density n ~10²⁵ cm⁻³ but short interaction time τ ~100 ps in the ignition hot spot

Laser Fusion Energy (LFE)

Laser Fusion

Direct Drive

Ignition Conditions: ρ ~ 400 g cm⁻³ T ~ 6 keV In central hot spot region

Indirect Drive

Lawrence Livermore National Laboratory National Ignition Facility - USA

Goal to reach ignition and produce modest target gains of G = 10-20

https://lasers.llnl.gov/

Laser Mega Joule - France

- 0.35 μm Indirect Drive Under Construction
- Initial phase 166 beams at 1.2 MJ
- First shot on target 2015
- Full facility 240 Beams 2 MJ possible in future

http://www-Imj.cea.fr/

Proposed European HiPER Project Advanced Ignition Demonstration Experiment

http://www.hiperlaser.org

Cost ~ \$1-2B Euro Planning Started under the Framework 7 Program

Proposed FIREX-II Ignition and Burn

LIFT Demo Reactor Proposal - Japan

Advanced Ignition Techniques

Fast Ignition and Shock Ignition

Fast Ignition – An Improved Approach

Ignition Requirements $\rho \sim 300 \text{ g cm}^{-3}$ $\tau_{dep} \sim 20 \text{ ps}$ **D**_{dep} ~ **40** μm E_{dep} ~ 20 kJ E_{laser} ~ 200 kJ φ_{laser} ~ 20 - 40 μm $I_{laser} \sim 10^{20} - 10^{21} W$ cm⁻²

Fast Ignition

Laser cannot penetrate into the core Therefore deliver in the form of MeV electrons or ions driven by Ultra-intense (PW) short pulse laser

Energy Gain Scaling for Fast Ignition

Reduce Laser Requirements almost an order of magnitude: Smaller and less expensive initial IFE reactors possible

Initial Heating Results Demonstrated at ILE Japan

Fast ignition experiments by the PW laser demonstrated the heating efficiency of 20%.

Electron Energy Scaling

Required electron energies ~ 1-3 MeV

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

Proton Fast Ignition with Protons

VOLUME 86, NUMBER 3

PHYSICAL REVIEW LETTERS

15 JANUARY 2001

Fast Ignition by Intense Laser-Accelerated Proton Beams

M. Roth,^{1,2} T. E. Cowan,^{1,3} M. H. Key,¹ S. P. Hatchett,¹ C. Brown,¹ W. Fountain,⁴ J. Johnson,⁴ D. M. Pennington,¹ R. A. Snavely,¹ S. C. Wilks,¹ K. Yasuike,⁵ H. Ruhl,⁶ F. Pegoraro,⁷ S. V. Bulanov,⁸ E. M. Campbell,^{1,3} M. D. Perry,^{1,3} and H. Powell^{1,*}

FIG. 1. Indirectly driven fast ignition using a laser accelerated proton beam (not to scale). The rear surface of the laser target is shaped to focus the ion beam into the spark volume.

Required proton Energies ~ 15-20 MeV

- Need Conversion efficiency from laser to protons of 10%
- Only achieved in a few experiments to date
- Need to demonstrate guiding and coupling to the core

Shock Ignition

Shock Ignition

- Strong shock at the end of the compression pulse causes ignition of compressed fuel core
- Recently proposed in detail in 2007 by Betti et al. (PRL 98, 155001 (2007))
- Similar Concept by Shcherbakov, Sov. J. Plasma Phys. 9(2) 240 (1983)

High Gains at Low Pulse Energies

JL Perkins (LLNL)

A. Schmitt (NRL)

U of A Experiments

Fast Ignition Physics Scaling Experiments at Second Harmonic Wavelength

Using the TITAN Petawatt Laser at the Lawrence Livermore National Laboratory

Collaboration with LLNL,UCSD, GA, Ohio State University

Titan Laser Facility

Titan will enable experiments combining short-pulse petawatt-class, and long-pulse kJ beams

P03101-mje-u-206

Experimental Diagnostic Layout

2ω Titan Run Parameters

50 J 700 fs 0.53 μm 5 x 10¹⁹ W cm⁻² Prepulse < 10μJ or 3mJ injected

> Planar Foil Targets Buried Cone targets Cone foil Targets Cone Wire Targets

Targets used

Shots taken with no prepulse (<10 μ J) or with injected 3mJ 3ns 2 ω prepulse

Typical 2ω Escaping Electron Spectra 15°

Hard X-ray Bremsstrahlung Cannon Spectrometers

Filtered image plate stack with Pb collimator sensitive up to 500keV

X-Ray Spectrometer Setup

Schematic of X-Ray Spectrometer setup. Image plates and filters are alternated in stacked order

Raw X-Ray Spectrometer data for first 5 channels for 1ω light

Raw X-Ray Spectrometer data for first 5 channels for 2ω light

Electron Beam Divergence from Bragg Crystal Imager K_{α} Images

Electron Beam Divergence from Kirkpatrick-Baez 7- 9 keV X-ray Imager

Summary - Electron Energy Scaling

Experimental Results

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

Summary UofA FI Experiments

- Successful implementation of 2ω target experiments at 50J 700fs level at the TITAN facility up to 5 x 10¹⁹ W cm⁻²
- 2ω Conversion efficiencies over 60% obtained, < 10 μ J pp
- Hot electron temperature scaling inside the target looks good for 2ω FI (follows Beg (Iλ²)^{1/3} scaling)

T_{hot} ~ 0.37 – 0.50 MeV (Bremsstrahlung)

- ~ 1.5 1.9 MeV (hotter escaping electrons)
- Major Issue is large electron divergence angle
 - FW ~ 120° 142° Bremsstrahlung
 - FW ~ 54° K_{α} imaging
- Absorption and electron yield lower than 1ω as expected for lower Iλ² - expect to increase to >30% with higher intensities

Firex I – Predicted Electron Heating 1kJ pulse

- Simulation of 820J 1.4ps 1053nm LFEX pulse in cone target
- 1MeV temperature electron spectrum artifically introduced
- 27 % efficient electron coupling to core with perfect collimation (requires imposed magnetic field of the order of 1kT = 10 MG)
- 10% predicted with current 1kT B-field guide
- Goal to reach 5keV heating with 5kJ PW pulse

Fujioka Phys Rev E, 91, 063102, 2015

Status of Fast Ignition with Electrons

- **1. Conversion efficiency to energetic electrons**
 - Experiments indicate 10% to 60% (various conditions)
- 2. Electron temperatures
 - Experiments indicate temperatures in range (2-10 MeV)
 - Requires 2nd harmonic wavelength
- 3. Coupling of electrons to core
 - Experiments indicate 10% 30 % efficiency
 - not good enough

Requires enhanced magnetic guiding

- Using magnetic fields from self driven currents
- Magnetic fields of ~10 MG required

Laser Generated Magnetic fields

Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser

Shinsuke Fujioka¹, Zhe Zhang¹, Kazuhiro Ishihara¹, Keisuke Shigemori¹, Youichiro Hironaka¹, Tomoyuki Johzaki², Atsushi Sunahara³, Naoji Yamamoto⁴, Hideki Nakashima⁴, Tsuguhiro Watanabe⁵, Hiroyuki Shiraga¹, Hiroaki Nishimura¹ & Hiroshi Azechi¹

Fujioka Scientific Reports 3, 1170, 2015

Magnetic Guiding with Laser Generated Field

Factor of 2 increase in electron beam intensity with laser B-field

[1] J.J. Santos et al., submitted to New J. Phys., arXiv:1503.00247.

Cylindrical Core Compressed Magnetic Field

30 MG fields compressed with implosion core

Initial seed field of B < 90 kG

PHYSICS OF PLASMAS 17, 056318 (2010)

Compressing magnetic fields with high-energy lasers^{a)}

J. P. Knauer,^{1,b)} O. V. Gotchev,^{1,2,3} P. Y. Chang,^{1,4} D. D. Meyerhofer,^{1,2,3,4} O. Polomarov,^{2,3} R. Betti,^{1,2,3,4} J. A. Frenje,^{2,5} C. K. Li,^{2,5} M. J.-E. Manuel,^{2,5} R. D. Petrasso,^{2,5} J. R. Rygg,⁶ and F. H. Séguin^{2,5} I. *Laboratory for Laser Energetics, University of Rochester, 250 East River Road,*

Laser Driven Cylindrical implosion

Knauer, Phys. of Plasmas 17, 056318, 2010

FIG. 9. (Color online) A plot of the final magnetic field vs the initial magnetic field for three different types of flux compression. The data shown by squares are from high-explosive-driven implosions. The triangles show data from electromagnetically driven implosions. Data for laser-driven implosions from this work are shown as diamonds.

Spherical Core Compressed Magnetic Field

50-100 MG spherically compressed fields predicted

PHYSICS OF PLASMAS 17, 056318 (2010)

Compressing magnetic fields with high-energy lasers^{a)} J. P. Knauer^{1,b)} O. V. Gotchev,^{1,2,3} P. Y. Chang,^{1,4} D. D. Meyerhofer,^{1,2,3,4} O. Polomarov,^{2,3} R. Betti,^{1,2,3,4} J. A. Frenje,^{2,5} C. K. Li,^{2,5} M. J.-E. Manuel,^{2,5} R. D. Petrasso,^{2,5} J. R. Rygg,⁶ and F. H. Séguin^{2,5} ¹Laboratory for Laser Energetics, University of Rochester, 250 East River Road, (c) Density Density g/cm3 50 120 R (µm) 10 0 Tion Tion eV 50 4400 R (µm) 400 -5050 -5050 0 0 $Z(\mu m)$ $Z(\mu m)$

Knauer, Phys. of Plasmas 17, 056318, 2010

Laser Driven Spherical implosion simulation

B-fields Using Circular Polarization

7MG fields from 10¹⁹ W cm⁻² in underdense plasma

VOLUME 87, NUMBER 21

PHYSICAL REVIEW LETTERS

19 NOVEMBER 2001

Measurements of the Inverse Faraday Effect from Relativistic Laser Interactions with an Underdense Plasma

Z. Najmudin,¹ M. Tatarakis,¹ A. Pukhov,² E. L. Clark,¹ R. J. Clarke,³ A. E. Dangor,¹ J. Faure,⁴ V. Malka,⁴ D. Neely,³ M. I. K. Santala,¹ and K. Krushelnick¹

¹Imperial College of Science, Technology & Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom

FIG. 3. Measured peak magnetic field versus "vacuum" intensity for various plasma densities (in cm⁻³). Theoretical curve is from Ref. [8] for $n_e = 3.5 \times 10^{19}$ cm⁻³.

Najmudin, PRL 87, 215004 2001

FIG. 4. 3D PIC simulation results. (A) Longitudinal cut of the generated B_z —along the laser beam. The beam has propagated 400 μ m through plasma. (B) Trajectories of 10 arbitrarily chosen electrons trapped in the channel. The arrow shows the direction of circulation.

Laguerre Gaussian Beams with Orbital Angular Momentum

week ending 16 JULY 2010 PHYSICAL REVIEW LETTERS PRL 105, 035001 (2010) **Inverse Faraday Effect with Linearly Polarized Laser Pulses** S. Ali,^{1,2,*} J. R. Davies,¹ and J. T. Mendonca¹ ¹Instituto de Plasmas e Fusão Nuclear—Laboratório Associado, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal 25 8 _G_0 20 6 15 4 B₂[MG] B_z[MG] 10 2 5 0 0 -2 LG1 -5 -4 -20 -20 -10 20 30 -30 0 10 r[μm]

FIG. 2 (color online). The axial magnetic field B_z as a function of r with laser intensity $I_0 = 7.3 \times 10^{22}$ W m⁻² and the LG polynomials LG₀⁰ with $\sigma_z = 1$ and LG₁¹ with $\sigma_z = -1$.

Megaauss fields predicted with Laguerre Gauss Orbital Angular Momentum Modes

FIG. 3 (color online). The axial magnetic field B_z as a function of r with laser intensity $I_0 = 7.3 \times 10^{22}$ W m⁻² and the LG polynomials LG⁰₁ with $\sigma_z = 1$ and LG⁻¹₁ with $\sigma_z = 0$.

Ali, PRL 105, 035001 (2010)

UofA PIC Simulations Starting of OAM Mode Interactions with Plasma

Longman, SLAC High Power Laser Workshop (2015)

Resistive Switchyard Magnetic Guiding

PRL 108, 125004 (2012)

PHYSICAL REVIEW LETTERS

week ending 23 MARCH 2012

Focusing of Relativistic Electrons in Dense Plasma Using a Resistivity-Gradient-Generated Magnetic Switchyard

A. P. L Robinson,¹ M. H. Key,² and M. Tabak² ¹Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxon., OX11 0QX, United Kingdom ²Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94550, USA (Received 16 September 2011; published 20 March 2012)

Robinson, PRL 108, 125004 2012

27% energy coupling from 20 kJ, 18ps laser pulse with 140 degree starting full divergence cone angle

UofA Electron Guiding due to Resistivity Gradients

Electrons are guided to areas of high resistivity by the magnetic fields established by resistivity gradients (electrons bend towards regions of higher resistivity):

UofA Electron Divergence Measurements at 527 nm

Determine scaling at 2ω for 1054 nm of hot electron generation and transport through resistive layers using the LLNL Titan laser.

Goals:

- 1. Measure electron generation efficiency
- 2. Measure divergence in foil targets with buried resistive Z layer

Simulation Results Show Almost Identical Al and Au Spot Sizes

Hybrid PIC modeling [1] with 540 keV temperature source and two contributions to the divergence angle [2] of 30° global and 55° local (HWHM).

- 1. Honrubia, PPCF 51, 014008 (2009)
- 2. Debayle, PRE 82, 036405 (2010)

In agreement with the experimental results

Two pulse guiding

Lower intensity pulse generates an initial guiding field which is strengthened by the main second pulse

PRL 109, 015001 (2012)

PHYSICAL REVIEW LETTERS

6 JULY 2012

Controlling Fast-Electron-Beam Divergence Using Two Laser Pulses

R. H. H. Scott,^{1,2,*} C. Beaucourt,³ H.-P. Schlenvoigt,⁴ K. Markey,² K. L. Lancaster,² C. P. Ridgers,⁵ C. M. Brenner,^{6,2} J. Pasley,⁷ R. J. Gray,⁶ I. O. Musgrave,² A. P. L Robinson,² K. Li,⁸ M. M. Notley,² J. R. Davies,⁸ S. D. Baton,⁴ J. J. Santos,³ J.-L. Feugeas,³ Ph. Nicolaï,³ G. Malka,³ V. T. Tikhonchuk,³ P. McKenna,⁶ D. Neely,^{2,6} S. J. Rose,¹ and P. A. Norreys^{1,2}

Peak electron flux enhanced 5x when using high contrast double pulse R = 1:10, 186J 1.4 ps, 1e20 Wcm-2

Robinson, PRL 108, 125004 2012

Three pulse guiding

Simulations show stacking more pulses improves shaping of magnetic field more

PHYSICAL REVIEW E 90, 063108 (2014)

Controlling the fast electron divergence in a solid target with multiple laser pulses

L. Volpe,^{1,2,*} J-L. Feugeas,¹ Ph. Nicolai,¹ J. J. Santos,¹ M. Touati,¹ J. Breil,¹ D. Batani,¹ and V. Tikhonchuk^{1,†} ¹Univ. Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405 Talence, France ²ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged 6720, Hungary (Received 8 June 2014; published 9 December 2014)

Peak electron flux enhanced 2x when using triple pulse versus double pulse

FIG. 4. (Color online) Distribution of the electron-beam density $(\log n_e)$ at the end of the process for the double pulse scheme at t = 10 ps (case A, center) and for the triple pulses scheme at t = 13 ps (case B, right). In the left panel is shown the case C with the energy E = 40 J. Other parameters are shown in Table I.

Volpe, Phys. Rev. E 90, 063108 (2014)

Proton Fast Ignition Scaling

Requires conversion efficiency above 10% and 10 – 20MeV Energies

VOLUME 86, NUMBER 3

PHYSICAL REVIEW LETTERS

15 JANUARY 2001

Fast Ignition by Intense Laser-Accelerated Proton Beams

M. Roth,^{1,2} T. E. Cowan,^{1,3} M. H. Key,¹ S. P. Hatchett,¹ C. Brown,¹ W. Fountain,⁴ J. Johnson,⁴ D. M. Pennington,¹ R. A. Snavely,¹ S. C. Wilks,¹ K. Yasuike,⁵ H. Ruhl,⁶ F. Pegoraro,⁷ S. V. Bulanov,⁸ E. M. Campbell,^{1,3} M. D. Perry,^{1,3} and H. Powell^{1,*}

FIG. 3. Simulation of the energy deposition of protons in an isochorically compressed pellet.

FIG. 2. Optimum parameter range for fast ignition based on 2D simulations by Atzeni.

Roth, PRL 86, 436 (2001)

10% Conversion Efficiency into Protons

VOLUME 85, NUMBER 14 PHYSICAL REVIEW LETTERS 2 OCTOBER 2000

Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids

R. A. Snavely,^{1,2} M. H. Key,¹ S. P. Hatchett,¹ T. E. Cowan,¹ M. Roth,^{3,*} T. W. Phillips,¹ M. A. Stoyer,¹ E. A. Henry,¹ T. C. Sangster,¹ M. S. Singh,¹ S. C. Wilks,¹ A. MacKinnon,¹ A. Offenberger,^{4,*} D. M. Pennington,¹ K. Yasuike,^{5,*} A. B. Langdon,¹ B. F. Lasinski,¹ J. Johnson,⁶ M. D. Perry,¹ and E. M. Campbell¹
¹Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94550
²Department of Physics, University of California, Davis, Davis, California 95616
³GSI Laboratory, Darmstadt, Germany
⁴University of Alberta, Edmonton, Alberta, Canada T6G 2G7
⁵ILE, Osaka University, Suita, Osaka 565, Japan
⁶George C. Marshall Space Flight Center, Huntsville, Alabama 35812 (Received 19 January 2000)

targets irradiated at 1 PW power and peak intensity 3×10^{20} W cm⁻². Up to 48 J (12%) of the laser energy is transferred to 2×10^{13} protons of energy >10 MeV. The energy spectrum exhibits a sharp high-energy cutoff as high as 58 MeV on the axis of the beam which decreases in energy with increasing off axis angle. Proton induced nuclear processes have been observed and used to characterize the beam.

 High energy pulses were able to generate ~10% conversion efficiency

Snavely, PRL 85, 2945 (2000)

Two pulse proton Enhancement Markey

2 pulse irradiation helps proton generation efficiency

Markey, PRL 105, 195008 (2010)

Peak proton energy and proton generation efficiency enhanced by prepulse on the order of 1ps in advance

Record 15% proton generation efficiency with 2 pulse irradiation

• Optimized 2 pulse conditions give 15% proton generation efficiency

APPLIED PHYSICS LETTERS 104, 081123 (2014)

CrossMark

High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

C. M. Brenner, ^{1,2} A. P. L. Robinson, ² K. Markey, ² R. H. H. Scott, ² R. J. Gray, ¹ M. Rosinski, ³ O. Deppert, ⁴ J. Badziak, ³ D. Batani, ⁵ J. R. Davies, ⁶ S. M. Hassan, ⁷ K. L. Lancaster, ² K. Li, ⁸ I. O. Musgrave, ² P. A. Norreys, ^{2,9} J. Pasley, ^{10,2} M. Roth, ¹¹ H.-P. Schlenvoigt, ¹² C. Spindloe, ² M. Tatarakis, ⁷ T. Winstone, ² J. Wolowski, ³ D. Wyatt, ² P. McKenna, ¹ and D. Neely²

Brenner, APL 104, 081123 (2014)

Demonstration of 50 micron focussing

VOLUME 91, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 19 SEPTEMBER 2003

Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam

P.K. Patel,¹ A. J. Mackinnon,¹ M. H. Key,¹ T. E. Cowan,² M. E. Foord,¹ M. Allen,¹ D. F. Price,¹ H. Ruhl,² P.T. Springer,¹ and R. Stephens³ ¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA ²Department of Physics/220, University of Nevada-Reno, Reno, Nevada 89507, USA ³General Atomics, P.O. Box 85608, San Diego, California 92186, USA

50 micron ballistic focal spot demonstrated

Patel, PRL 91, 125004 (2003)

University of Alberta 2 Pulse Simulations

Initial University of Alberta Particle in Cell Simulations starting to reproduce some of the features of the 2 pulse simulations from Markey

Fast Ignition Challenges

Fast Ignition

- Conversion efficiency good: 20-30% expected
- Electron Temperature good using second harmonic wavelength (70% optical conversion efficiency expected from 1ω to 2ω)
- Coupling to compressed core plasma a critical issue – will require magnetic guiding schemes:
 - Embedded and compressed fields (Rochester)
 - Laser driven external fields (ILE)
 - Resistive gradient guide fields (Rutherford)
 - Orbital/Circular angular moment modes (UofA)

The Way Forward

NIF Indirect Drive Status

- Neutron yield of ~10¹⁶ obtained to date
- 20kJ fusion energy yield from 10kJ heating energy into ignition spot
- Alpha heating demonstrated
- Need double the energy into the ignition spot to achieve ignition and burn
- Hope to achieve Ignition in the next several years

Rochester Direct Drive Status

- University of Rochester Laboratory for Laser Energetics (LLE) is the lead lab for direct drive in world
 - 30kJ symmetric implosions at 0.35 μm
 - Conducting polar direct drive experiments at NIF at 1 MJ level
- Best neutron yield of 2 x 10¹³ obtained to date
- Scaled ITFX parameter of 0.24 achieved
 - Working on improving fuel compression from hot spot $\rho R = 0.2$ g cm ⁻² to 0.3 g cm ⁻² required
 - Fuel preheat from hot electrons from laser plasma
 - Rayleigh Taylor Instability and fuel mix
- Will improve conditions using:
 - Variable Z layer targets to reduce hot electrons and fuel preheat
 - Smoother targets

Polar direct Drive on NIF

Planning for more uniform irradiation Polar Direct Drive Experiments is under way at Rochester and LLNL with design of phase plates to give uniform energy absopriotn of the beam

The two images above display two different phase plate spot profiles that are designed to irradiate different parts of the target. The phase plate on the left is incident onto the target at 69°, and the one on the right is incident onto the target at 83° (closer to the target equator, as indicated by the white dashed line). Near the equator, the phase plates are

Pump Lasers Being Scaled up to kJ Level

 Rutherford Appleton Central Laser facility DiPOLE100 100J 10 Hz Pump Laser

Mason ICUIL 2014

The Way Forward

- Must finish the job of reaching ignition
- Must finish investigating the scaling of advanced ignition techniques
- Many options need to be explored
- Start developing support technologies
- Must develop comprehensive 3D modeling simulations of integrated system interactions
- U of A investigating scaling issues for advanced ignition conditions

European Road Map

• 2013 European Roadmap developed for IFE

Role for Canada

- Establish Fusion Energy R&D programs
 - Carry out critical assessment of best routes to Fusion Energy
 - Start developing critical mass of expertise by collaborating with international partners
 - Develop a balanced program in chosen routes to Fusion Energy
 - Develop detailed modeling capabilities
 - Start R&D programs in critical technology elements for future reactor systems (magnetic systems, heating technologies, lasers, optics, materials, targets, tritium handling, etc.)

Role for Alberta

Establish Laser Fusion Energy R&D program

- ABCtech reported on status of Fusion Energy to Alberta Government in 2014 (http://abctech.ca/energy-distribution)
- Identified Laser Fusion as most rapidly advancing approach at present
- Recommend a Laser Fusion based R & D program

Conclusions

- Laser Fusion Energy Breakeven could possibly be demonstrated some time between 2016 to 2020
- Fusion energy will significantly change the energy supply equation and eventually Canada's role as an energy leader in the world
- USA, Europe and Japan have plans for next stage engineering demo reactors on the shelf
- Canada should be prepared for this game changing development
- We need to start preparing now for this future
- There is much to do and more resources are required

43rd IEEE International Conference on Plasma Science, June 19-23, 2016, Banff, Alberta, Canada

The International Conference on Plasma Science (ICOPS) is an annual conference coordinated by the Plasma Science and Application Committee (PSAC) of the IEEE Nuclear Plasma Sciences Society. The program of the 43rd ICOPS covers both traditional areas of plasma science and new areas of growth. The conference offers an outstanding forum for scientists and engineers to learn some of the greatest advances in plasma science and technology in recent years and to discuss future directions.

Sponsors

Questions and Discussion?

Thank You

NIF Low Adiabat Scaling and Alpha Heating

PERFORMANCE OF INDIRECTLY-DRIVEN CAPSULE IMPLOSIONS ON NIF USING ADIABAT-SHAPING^{*}

H.F. Robey¹, V.A. Smalyuk¹, J.L. Milovich¹, T. Döppner¹, B. Bachmann¹, K.L. Baker¹, L.F. Berzak Hopkins¹, E. Bond¹, J.A. Caggiano¹, D.A. Callahan¹, D.T. Casey¹, P.M. Celliers¹, C. Cerjan¹, D.S. Clark¹, S.N. Dixit¹, M.J. Edwards¹, N. Gharibyan¹, E. Giraldez², S.W. Haan¹, B.A. Hammel¹, A.V. Hamza¹, R. Hatarik¹, M. Hohenberger³, D. Hoover², O.A. Hurricane¹, K.S. Jancaitis¹, M. Gatu Johnson⁴, O.S. Jones¹, J.J. Kroll¹, K.N. Lafortune¹, O.L. Landen¹, T. Ma¹, B.J. MacGowan¹, A.G. MacPhee¹, A. Nikroo², A. Pak¹, P.K. Patel¹, J.L. Peterson¹, D.B. Sayre¹, S.M. Sepke¹, B.K. Spears¹, C.R. Weber¹, C.C. Widmayer¹, and C. Yeamans¹

Robey, IFSA 2015

- Neutron Yields of 10¹⁶ achieved
- Alpha fusion heating observed
- Core pressures measured up to P = 150-230 Gbar
- Close to required pressure P =300-400 Gbar

OVERVIEW OF PROGRESS AND FUTURE PROSPECTS IN INDIRECT DRIVE IMPLOSIONS ON THE NATIONAL IGNITION FACILITY

O. A. Hurricane¹ ¹Lawrence Livermore National Laboratory, Livermore, CA, USA

Hurricane, IFSA 2015

