Fusion Research at the University of Saskatchewan - Tokamak and Dense Plasma Focus

R.A. Behbahani

on behalf of Plasma Physics Laboratory, University of Saskatchewan, Canada

*Supported by CRC, NSERC and Sylvia Fedoruk Center

Part 1: STOR-M Tokamak Experiments

- STOR-M Tokamak Research Program Recent projects
- Fuel Injecting
 - Compact torus (CT)
 - Repetitive CT injection
- Modification of Toroidal Flow Velocities in the STOR-M
 - Compact torus injection
 - Resonant Magnetic Perturbations (RMPs)

Part 2: DPF U of S –I Experiments

- **DPF-U of S-I design and fabrication**
 - Diagnostics
 - Faraday cup → ion beam detector
 - PIN diode → soft x-ray detector
 - Scintillator+ PMT → Hard x-ray measurement

Ion beam energy and flux Anomalous plasma resistance Plasma heating and runaway charged particles

Part 1:

STOR-M Tokamak Experiments

- Resources
 - Depletion of the fossil fuel storage
 - Depletion of the fission fuel storage
- Environment
 - CO₂ emission must be reduced
 - Alternative energy resources (wind, solar, etc.)
- We need fusion energy
 - Abundant fuel supply
 - Low carbon footprints
 - Safe (Always subcritical, no runaways)

What is a tokamak?

- Bend solenoid to form closed magnetic field lines
- Drive plasma current
 - Heating
 - Help create helical field lines
- Vertical field for stability and shaping
- Additional heating (microwave, neutral beams, etc.)

Tokamak: Russian abbreviation for magnetic chamber

ITER Tokamak

- International Thermonuclear Experimental Reactor
- Largest tokamak in the world
- International collaboration with 7 partners
 - China, EU, India, Japan, Korea, Russia, USA
- Being built in Cadarache, France
- Will start operation in about 7 years
- Demonstrate net power gain

ITER Tokamak

a = 2.0 m R = 6.2 m Q =10 P = 500 MW 73 MW heating

Plasma Physics Laboratory History

- Founded by Dr. Skarsgard in late 50's
- First Canadian tokamak STOR-1M (early 80's)
- STOR-M (built in 1987, still active)
- Compact torus injector added (90's)
- Plasma processing (90's)
- Dense Plasma Focus (2013)
- Both theoretical and experimental work

STOR-M Experiments

- Improved confinement induced by
 - Electrode/limiter biasing (early 1990's)
 - Turbulent heating
 - Compact torus injection
- Alternating Current operation (O. Mitarai)
 - First demonstrated on STOR-1M (a few kA plasma current)
 - Repeated on STOR-M (20 kA plasma current)
 - Repeated on JET (1 MA plasma current)
 - Repeated on HT-7 superconducting tokamak (quasi-steady state)
- Compact Torus Injector (mid 1990's until now)
- Resonant Magnetic perturbations (last few years)

STOR-M Tokamak Experiments

CWFEST 2915, Ottawa, Oct. 18th, 2015

Fuel Injecting

- Fueling
 - Current fueling technology is unable to directly fuel the reactor core.
 - Fuel recycling is complicated, also involving radioactive tritium
- Compact Torus (CT) Injection
 - Only candidate for deep fueling
 - Increase the burn rate
 - Momentum injection by tangential CT injection → Control flows (increase tolerance to error field)

Compact Torus

- Magnetically confined robust plasmoid
- High in density, small in size
- Large acceleration, high velocity
- CT can be formed and accelerated in a coaxial gun

CT layout

High voltage, high power, fast pulse discharges

- 25 kV, 20 μ F banks
- Low inductance
- High current 150-220 kA
- 2.5 µs quarter cycle rising time

Penetration requirement

CT directional kinetic energy density must exceed the tokamak magnetic field energy density

$$\frac{1}{2}m_{i}n_{ct}v_{ct}^{2} > \frac{B_{tok}^{2}}{2\mu_{0}}$$

 n_{ct} : CT ion density m_i : CT ion mass v_{ct} : CT velocity B_{tok} : tokamak toroidal magnetic field USCTI parameters: $n_{ct} = 10^{15} \text{ cm}^{-3}$ $v_{ct} = 200 \text{ km/sec}$ total mass 0.5 µg

CT Induced Improved Confinement

- $H_{\alpha} \downarrow$
- MHD Fluctuations↓
- Floating potential fluctuations↓
- Energy confinement time 1

Most clear signatures of improved confinement induced by CT injection S. Sen, C. Xiao, A. Hirose, R.A. Cairns, PRL, 88, 185991, 2002

Repetitive CT operation

Discharge waveforms

Record high repetitive rate of 10 Hz has been achieved!

Modification of toroidal flow velocities in the STOR-M Tokamak

- MHD instabilities (tearing mode or magnetic islands) interacts with the resistive wall or error field from coils
- If the plasma (or mode) does not rotate, those modes could be "locked" and grow quickly causing minor or major disruptions
- MHD instabilities degrade confinement
- Major disruptions in a fusion reactor → Huge thermal load on the first wall and Induces high voltage/current on coils and structures

Tangential CT injection

Only Tangential CT injection experiment ever tested in the world

Flow modification by CT injection

First and only demonstration of momentum injection by CT injection

Experimental Setup - RMP

m/n=2/1 helical coils to suppress the dominant mode

$$\tilde{B} = B_0 \exp\left[i\left(m\theta - n\varphi - \omega t\right)\right]$$

MHD frequency and amplitude

Results-Suppression

Modification of flow velocities by RMP

O_V and C_{VI} flow measurements at different RMP currents RMP

was fired at 20ms for 8ms

- Co-current flow at SOL/edge (+ve, CCW)
- Counter-current flow at center (-ve, CW)

Part 2: DPF U of S–I Experiments

Dense plasma focus

PLASMA FOCUS DEVICES (kJ-MJ)

PF-1000, IPPLM, Warsaw

- Charging voltage $U_0 = 20 40 \ kV$
- Bank capacitance $C_0 = 1.332 mF$
- Bank energy *E*₀ = 266 1064 kJ
- Nominal inductance $L_0 = 157$

3 kJ Small Plasma Focus

Introduction

CWFEST 2915, Ottawa, Oct. 18th, 2015

Neutron yield scaling laws and neutron saturation problem

Early experiments show: Y_n~E_{o²}

Prospect was raised in those early research years that, breakeven could be attained at several tens of MJ.

However quickly shown that as E_o approaches 1 MJ, a neutron saturation effect was observed; Y_n does not increase as much as expected, as E_o was progressively raised towards 1 MJ.

Fundamental reason for neutron saturation

constant dynamic resistance relative to decreasing generator impedance

IAEA Co-ordinated research program

IAEA Co-ordinated research project "Dense Magnetized Plasma"

- 8 countries: Poland, Russia, Italy, Singapore, China, Estonia, Romania, Republic of Korea
- The main directions of applications developed are:
- radiation material science;
- proton emission tomography;
- X-ray lithography;
- radiation enzymology;
- radiation medicine, etc;

DPF device for Aneutronic Fusion

There are two main technical challenges to an eutronic fusion: $p + {}^{"B} \rightarrow 3 {}^{4}He + 8.7 MeV$

- fusion ignition temperature is around 600 keV → Can be achieved by DPF
- Energy loss due to X-ray emission → Intriguing quantum mechanical effect

DPF device for Aneutronic Fusion

DPF power plant

DPF U of S-I

Parameters of the 2 kJ DPF device DPF-UofS-I device

Capacitance = 5 microfarad

- Statics Inductance = 160 nH
- Charging Voltage = < 30kV
- **Electrode Material** = Copper
- **Anode Radius**
- **Cathode Radius**
- **Insulator Material**
- = 40 mm
- = Quartz

= 15 mm

Insulator Length

Simulated plasma temperature (eV)

V.V. Vikhrev model, AIP Conference Proceedings 01/2006; 808(1):354-357. DOI: 10.1063/1.2159388

DPF-U of S–I

Faraday cup \rightarrow ion beam detector

PIN diodes \rightarrow **soft x-ray detectors**

Faraday cage, HXR and oscilloscope

Ion beam emission from low-Z and high-Z DPF plasmas

plasma voltage, dI/dt , ion beam and soft x-ray signals Hydrogen gas

charging voltage of 28 kV and operating pressure of 5 mbar

Ion beam emission from Hydrogen, Nitrogen and Argon Plasmas

Energy distribution of ion current density (Hydrogen Plasma)

As pressure increases, the peak energy of ions decreases, put the current density increases (Bank voltage=28 kV)

Energy distribution of ion current density (Argon Plasma)

The peak ion current density occurs between 200 keV and 450 keV. Longer tail compare to Hydrogen and Nitrogen gases (Bank voltage= 28 Kv)

comparison of the measured peak ion beam current density with Lee model in high-Z and low-Z gases

Comparison the experimental results regarding the measured ion current density in three operating gases and different operating pressures with Lee model

Physics of Plasmas (1994-present) 20, 062702 (2013); doi: 10.1063/1.4811650

Thank you