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e Compact torus (CT)
* Repetitive CT injection
 Modification of Toroidal Flow Velocities in the

STOR-M
 Compact torus injection
* Resonant Magnetic Perturbations (RMPs)
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* PIN diode - soft x-ray detector
e Scintillator+ PMT - Hard x-ray measurement

Ion beam energy and flux
Anomalous plasma resistance
Plasma heating and runaway charged particles
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okamak Experiments
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Why Fusion?

e CO2 emission must be reduced
- Alternative energy resources (wind, solar, etc.)

» We need fusion energy
- Abundant fuel supply
 Low carbon footprints
» Safe (Always subcritical, no runaways)

CWEFEST 2915, Ottawa, Oct. 18th, 2015 5



What is a tokamak?

Magnetic Circuit
(iron transformer core)

Inner Poloidal Field Coils
(primary transformer circuit)

Toroidal
Field
Coils

Outer Poloidal
Field Coils
ifor plasma
postioning
and shaping)

Poloidal field
Toraidal field

Flasma with Flasma Current, |
(secondary transformer circuit)

1eld lines
e Vertical field for
stability and shaping

e Additional heating

(microwave, neutral Tokamak: Russian abbreviation for
magnetic chamber

Resultant Helical Magnetic Field
(exaggerated)

beams, etc.)
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ITER Tokamak

e China, EU, India, Japan, Korea, Russia, USA

® Being built in Cadarache, France S

e Will start operation in about 7 years
¢ Demonstrate net power gain
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ITER Tokamak
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Plasma Physics Laboratory History

ompact torus injector aadec

Plasma processing (9o’s)

Dense Plasma Focus (2013)

Both theoretical and experimental work
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STOR-M Experiments

e Alternating Current operation (O. Mitarai)
e First demonstrated on STOR-1M (a few kA plasma current)
e Repeated on STOR-M (20 kA plasma current)
e Repeated on JET (1 MA plasma current)

. Repe)ated on HT-7 superconducting tokamak (quasi-steady
state

e Compact Torus Injector (mid 1990’s until now)
e Resonant Magnetic perturbations (last few years)
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STOR-M Tokamak Experiments
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Fuel Injecting

involving radioactive tritium

 Compact Torus (CT) Injection
e Only candidate for deep fueling
e Increase the burn rate
e Momentum injection by tangential CT
injection - Control flows (increase

tolerance to error field)
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Compact Torus

Toroidal field
of tokamak

CT poloidal field
AN

.
)
CT toroidal field Compact

Toroid (CT)

a) b) c)

Tokamak Plasma

* Magnetically confined robust plasmoid

* High in density, small in size

» Large acceleration, high velocity

* CT can be formed and accelerated in a coaxial gun
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Accel. Bank Form. Bank

rPorts for gauges and

| for gas fill during glow
i - -

|'! discharge cleaning

201K 20 HF |
20 kV 20 kWV f . /
Iy ) b \ Solenoid < fast gas puffing VLI'VG.-'.:I
- 4 — 4 \ f \\ /
[ Y /

High voltage, high power, fast pulse discharges

/

Compressor

Accceleration region

25 kV, 20 pF banks

Low inductance

High current 150-220 kA

2.5 us quarter cycle rising time
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Penetration requirement

—mn, v, >—

2 1" “ct ﬂo
n,: CT lon density USCTI parameters:
m. : CT 1on mass n, =10" cm

v, : CT velocity ~
B, : tokamak toroidal | Ve = 200 km/sec
magnetic field oz, e VoS jug
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CT Induced Improved Confinement
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e Density T : .
. L Most clear signatures of improved
a . .
e  MHD Fluctuations | confinement induced by CT
. Floating. potential iIlj ection
fluctuations ! S. Sen, C. Xiao, A. Hirose, R.A. Cairns, PRL, 88, 185991, 2002

* Energyconfinement time T
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— Repetitive CT operation

e

Storage
Bank

S

o
o
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Discharge waveforms

t [us] Veg = -20kV

Record high repetitive rate of 10 Hz has been achieved!
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Modification of toroidal flow velocities in the
STOR-M Tokamak

 If the plasma (or mode) does not rotate, those
modes could be “locked’ and grow quickly
causing minor or major disruptions

« MHD instabilities degrade confinement

* Major disruptions in a fusion reactor = Huge
thermal load on the first wall and Induces high
voltage/current on coils and structures

CWEFEST 2915, Ottawa, Oct. 18th, 2015 19



Tangential CT injection
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Only Tangential CT injection experiment
ever tested in the world
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Flow modification by CT injection
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Experimental Setup -RMP

Gate Driver

G Hg
¢ 7Lt
L1«

4 45 IGBT Switch
2nd It
ban ban
k k
m/n=2/1

helical coils to B — B0 exp |:i (m6’ —Nep — a)’[):|
suppress the

dominant mode
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/

MHD freque;lcy and amplitude
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Modification of flow velocities by RMP

0., toroidal velocity Up = 22kA) C,, toroidal velocity “p = kA
4 . [
RMP
— by ™500A
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Oyand C; flow measurements at different RMP currents RMP

was fired at 2oms for 8ms e Co-current flow at SOL/edge (+ve, CCW)
e Counter-current flow at center (-ve, CW)
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DPF U of S-1 Experiments
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Dense plasma focus

Kink instability
atthe

Dense Plasma Focus ' Electron beam

lon beam

(=] t=-25nhs (=] t=—20ns

i cla t=-8 n= [ED =0 ns
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« Charging voltage - U, = 20 - 40 kV
 Bank capacitance - C, = 1.332 mF

» Bank energy - E, = 266 - 1064 kJ

« Nominal inductance - L, =157

02.10.2000 R.
- PF-T1000

e
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Neutron yield scaling laws and
neutron saturation problem

neutron saturation effect was observed; Y,, does no
increase as much as expected, as E, was progressively
raised towards 1 M]J.

Fundamental reason for neutron saturation

constant dynamic resistance relative to
decreasing generator impedance

28
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IAEA Co-ordinated research program

The main directions of applications developed are:
e radiation material science;

e proton emission tomography;

e X-ray lithography;

* radiation enzymology;

e radiation medicine, etc;
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mechanical effect
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DPF device for Aneutronic Fusion
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DPF power plant

5 MW Generator
« Clean

* |nexpensive
i Safe
Compact
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Parameters of the 2 kJ DPF device DPF-UofS—I device

Simulated plasma temperature (eV)
640

[Lee model | Pinch effect Simulated discharge
8 ! _ ‘/ current and tube
ool , !
160 €.
s
3
30
=S
4 |::| llllllll J""l
®, 1 Ilé
Time(microsecind)

V.V. Vikhrev model, AIP Conference Proceedings 01/2006; S. Lee, Radiative Dense Plasma Focus Computation Package:
808(1):354-357. DOI: 10.1063/1.2159388 ADPF http://www.plasmafocus.net;
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PIN diodes => soft x-ray detectors

e o
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-

Faraday cage, HXR and oscilloscope

HXR PMT
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plasmas
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plasma voltage, dl/dt , ion beam and soft x-ray signals
Hydrogen gas
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charging voltage of 28 kV and operating pressure of 5 mbar
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lon beam emission from Hydrogen, Nitrogen and Argon
Plasmas
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Energy distribution of ion current density
(Hydrogen Plasma)
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As pressure increases, the peak energy of ions decreases, put
the current density increases (Bank voltage=28 kV)
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Energy distribution of ion current density
Argon Plasma

Argon ion beam
energy distribution
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The peak i1on current density occurs between 200 keV and
450 keV. Longer tail compare to Hydrogen and Nitrogen
gases ( Bank voltage= 28 Kv)
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comparison of the measured peak ion beam current
density with Lee model in high-Z and low-Z gases

—t— Hydrogen, Lea model
W  Eexperimetal results

—a— MNitorgen,Lee model
+ Eexperimetal results

=—t— Argon,Lee model
¥  Eexperimetal results

g
T

8
-

2
S

NA.
5
<
>
‘W
c
]
=
:
3
o
c
o

| 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5 55 6 6.5 T
Operating presure(mbar)

Comparison the experimental results regarding the
measured ion current density in three operating gases
and different operating pressures with Lee model

Physics of Plasmas (1994-present) 20, 062702 (2013); doi: 10.1063/1.4811650
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