generalfusion

Progress in Acoustically-Driven Magnetized Target Fusion

Our Mission

Enable a transformation of the world's energy supply by developing the fastest, most practical, and lowest cost path to commercial fusion power.

World class team of 62, including 50 scientists and engineers

\$78M in private capital from a global investor syndicate Additional \$23M from SR&ED, SDTC, NRC-IRAP, NSERC

Over 125 patents filed, granted,

NASIONAL

or in process

Approaches to Fusion

Magnetic Fusion

Very low density, Continuous (ITER)

Magnetized Target Fusion

Medium density, Pulsed

Laser Fusion

Extreme density, Very short pulse (NIF)

"The closest to a potential reactor is what General Fusion is proposing."

-Dr. R. Kirkpatrick, Los Alamos National Laboratory

Why this Middle Region is Attractive

LINUS Concept (1976)

general fusion

The MTF "Solution"

Recognized as:

- Low cost
- Practical

Fixed:

- First wall problem
- Stand off problem
- Cost/shot problem
- Fuel rebreeding

General Fusion: Acoustic Magnetized Target Fusion general fusion

Example Parameters from Simulation

	Initial Conditions	Pistons kinetic energy	120	MJ
		Initial plasma density	1.25x10 ¹⁷	cm ⁻³
		Initial plasma temperature	100	eV
		Initial magnetic field	7	Tesla
		Initial plasma radius	20	cm
		Radial compression	10	
	Compression	Maximum fluid-plasma surface velocity	-2600	m/s
		Energy transfer to plasma	14	MJ
	Ignition	Peak plasma density	1.16x10 ²⁰	cm ⁻³
		Peak plasma temperature	25	keV
		Peak plasma pressure	5	Mbar
		Peak magnetic field	670	Tesla
		Confinement time (FWHM of plasma density):	7	μs
彩	Energy Output	Fusion energy produced	700	MJ
		Energy gain	6	

Practical

Compressed gas driver

- Uses power plant working fluid
- Baseline is steam (could be CO₂ or Helium)
- Low cost for high energy: <\$0.2/Joule compared to >\$2/Joule for pulsed power

Practical

Thick Lead-Lithium blanket

- 300 °C inlet temperature
- 550 °C outlet temperature
- 2 m³/s flow rate
- 2 MeV+ neutron flux to structure is 5 orders of magnitude lower than ITER
- 4π coverage, n,2n Pb reaction provides tritium breeding ratio of 1.5

Practical

Plasma target

- Liquid wall cannot be destroyed
- Target is plasma only
- Provides a pulsed system with no consumables

Convert to Mechanical Energy (33% efficient)

- Modular 100 MWe power plant
- Heat converted to electricity with a straightforward steam turbine
- Capital cost of plant: ~\$1,900/kW
 - + Fuel only \$0.00001/kWh
 - Limited fuel use each year: deuterium (18 kg/yr) & lithium (60 kg/yr)
- Levelized cost: ~\$0.07/kWh
- Balance of plant similar to coal generation

Component Development

Plasma Injectors	 Built largest injectors in the world Injectors built at scale Temperatures >4 million degrees
Acoustic Driver	 ✓ Full scale piston system completed 50 m/s impact velocity ± 5 µs impact timing control
Symmetric Vortex Collapse	 Constructed functioning piston/sphere prototype Liquid lead vortex and pumping system in operation

Reactor Physics Validation

Plasma Compression Tests	 Advanced fusion yield tests underway Significant new data, working toward validating fusion yield

COMPRESSION System

Acoustic Driver

Complexity Completed

Target

50 m/s impact velocity \pm 10 µs impact timing control (\pm 5 µs achieved)

Symmetric Vortex Collapse

Complexity Moderate

Target Smooth, symmetric collapse of molten Pb vortex

Piston Impact Velocity

Goal: Higher impact speeds, and better impact timing control.

Incorporate power plant considerations

- Energy efficiency
- Piston reset
- Integration with balance of plant (steam systems)

New design to be complete by the end of 2015

Liquid Pb Vortex Collapse

R-M Instabilities can be mitigated with a synchronized, convergent geometry

Vortex, Pistons & Sphere

Internal Simulation and Experimental Work focused on Vortex Formation

- Experiment and simulation reconstructed mini-sphere behavior
- Developed pathway to smooth vortex
- Created reliable vortex simulation model

University Collaboration Simulation and Experimental Work on Vortex Collapse

McGill

- Experiments replicated R-M jetting
- Design support for new apparatus

2014 Molded Gelatin Experiments

2015 Vortex Collapse Apparatus

2015

- McGill experiments to show shell formation in vortex collapse
- QMUL simulation effort starting now on anvil/fluid interface

Fluid and Vortex Behaviour – 3D Simulation

3D Fluid and Vortex Simulations have advanced significantly, now modeling many of the features seen in mini-sphere experimental data

general fusion

Shows that a smooth compression may be possible on mini-sphere if vortex smoothness can be improved

Plasma

Injectors

Complexity High

Target

100 eV, 10^{16} cm⁻³, 50 µs thermal life (for break-even) 100 eV, 10^{17} cm⁻³, 50 µs thermal life (for power plant)

PLASMA INJECTOR

Large Plasma Injector

Plasma Acceleration: Summary of Results

general fusion

Formation

Simulation shows good plasma structure: formation confinement is good on large injectors

Acceleration

Simulation shows how the acceleration current can degrade the plasma structure and confinement

Small Plasma Injector

Direct formation: no acceleration stage.

Comparable to CTX and SSPX designs

Lower maximum plasma density than large injectors

Faster design iteration

Designed for use in plasma compression experiments

Plasma Lifetime Progress on Small Injector

MHD Modulated by Sustain Current

Small gun current remaining after formation modifies MHD activity & lifetime

"Undersustained"

- 5.0kV
- q drops to 0.5 near core

"Oversustained"

- 5.5 kV
- q is driven \rightarrow 1

Well sustained

- 5.2 kV
- q is held 0.5<q(r)<1 for longer period

PROSPECTOR: Small Injector Variant

- 'Sustainment' current path:
- Overall safety factor: Stuffing Flux has Toroidal component

Can drive up to 800 kA through central shaft

Formation current of up to 1 MA

No gap below Center electrode

Reproduced sustained spheromak performance but with much better reliability

Scans of Shaft Current in PROSPECTOR

general fusion

- Early scans of shaft current showed transition from familiar spheromak behavior to tokomak-like behavior (dashed line)
- Transition occurs earlier as shaft current (Toroidal field) increased
- 'Tokamak' discharge (q >1 everywhere) has reduced magnetic turbulence, visible radiation

Plasma Characteristics after Transition

Latest Data (October 2015)

Thermal lifetimes (τ) now exceeding 100 μ s

Plasma Compression Testing

general fusion

Reactor Physics Validation

Plasma Compression Tests

Example Magnetic Data – Test #2

Effect of Lithium Walls - Test #7

- Thin coating of Lithium on the walls on Test #7 allowed much more reliable plasma performance (much like Titanium). Known benefits of "Gettering"
- Unlike Titanium, Lithium does not appear to greatly increase radiation during the plasma compression

Magnetic Probe Results - Test #9

- First problem-free compression with Li gettering (B-lifetime = $250 \ \mu$ s).
- Magnetic compression ratio 4-5 followed by strong n=1 instability.

Increase in Magnetic Field: recent field tests

- *PCS#9*: ~4x to 5x increase in magnetic field.
- Magnetic instabilities continue to point to shape as a root cause

Increase in Magnetic Field

New Compression Shape for 2016

Current Geometry Cylindrical Compression

New Geometry (SPECTOR) Self-Similar Compression

Compressed plasma shape is unstable; technique was easier to implement

Compressed plasma shape is stable and closer to actual reactor configuration

Cylindrical geometry causes MHD instabilities in compression

Self-similar geometry shows well nested flux surface and no instabilities

SPECTOR Injector (SPhErical Compact TORoid)

- Same circuit design as PROSPECTOR; 800kA formation current, 1MA preformation.
- Similar magnet design as MRT; Penning trap for gas breakdown.
- 36mWb of stuffing flux instead of 8mWb.
- New flux conserver geometry: compressing CT in a self-similar geometry is a challenge.
- Larger flux conserver, R=19cm
- Decreasing lambda along gun taper; gun radius much smaller than FC radius.
- Probe access from central shaft.
- D-shape FC has good stability, even during compression.
- No toroidal flux dump. Found unnecessary.
- Construction underway first plasma end of 2015

We are designing and building a new high-density injector, capable of breakeven (assuming 10x compression) General Fusion is working with PPPL and Bick Hooper (LLNL)

Thank You

Brendan Cassidy Open Innovation Manager <u>brendan.cassidy@generalfusion.com</u> 604-439-3003