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Introduction

Magnetized Target Fusion

I General Fusion (GF) is working towards
building a prototype magnetized target
fusion reactor in Vancouver, BC
(Howard et al., 2009).

I Magnetized plasma (spheromak) is
formed and accelerated into a
compression chamber.

I Plasma is compressed by a liquid lithium
lead shockwave created by pistons
impacting the outside of the chamber.

Figure: GF reactor concept.
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Introduction

Spheromaks

I A spheromak is a special plasma configuration that is compact and
generates its own magnetic field that insulates it from the walls
(Bellan, 2000; Jarboe, 2005).

I Spheromak magnetic field follows a helical path, which is nearly
parallel to the current.

Figure: (Left) GF plasma injector. (Right) Simulated spheromak.
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Introduction

Spheromak Formation (Kornack, 1998)

I Generate stuffing field, puff gas into injector vacuum.
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Introduction

Spheromak Formation (Kornack, 1998)

I Voltage applied, plasma formed, current creates gun field.
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Introduction

Spheromak Formation (Kornack, 1998)

I Gun field pushes plasma out, stretching stuffing field.
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Introduction

Spheromak Formation (Kornack, 1998)

I Stuffing field reconnects, and spheromak plasma formed.
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Control plasma with this:



Introduction

Plasma Diagnostics

I Some of the key parameters we would like to measure are density,
temperature, lifetime and magnetic field.

I GF is using or has attempted to used the following diagnostics:
I Magnetic coil probes
I Hall-effect probes
I Rogowski coils
I Interferometry
I Thomson scattering
I Spectroscopy
I Scintillator/Photomultiplier tubes
I Bubble detectors
I Polarimetry
I Langmuir probes
I X-ray photodiodes
I Bolometer
I High-speed imaging
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Magnetic Diagnostics

Magnetic Coil (B-dot) Probes

I Change in magnetic flux through loop of wire induces voltage:

V (t) = NA
dB

dt
I Voltage signal must be integrated over time to give magnetic field.
I Most probes are located on the surface of the machine, giving

readings of the spheromak’s poloidal field.
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Figure: (Left) B-dot probe. (Right) Probes show plasma moving down injector.
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Magnetic Diagnostics

Magnetic Probe Array

I Array of probes in a protective ceramic tube can be inserted into
plasma to measure magnetic fields in the plasma core.

I Immersed probes could contaminate and disturb the plasma, so
should only be used at low-temperature, low-density locations.
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Figure: (Left) Probe array shows toroidal field radial profile inside plasma.
(Right) Probe array inside injector.
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Magnetic Diagnostics

Rogowski coils

I Rogowski coils measure current entering/exiting injector.

I Useful for measuring input power and machine efficiency.

I As plasma accelerates down injector, inductance of machine increases,
which alters current going into machine.
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Figure: (Left) Rogowski coil on current feedthrough. (Right) Current measured.
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Interferometry

Plasma Interferometry

I Plasma index of refraction changes with electron density.

I Beam through plasma is phase shifted (Hutchinson, 2002, p116).

φn[rad] = 2.82 × 10−15λ

∫
nedl

I Interferometer measures phase shift to determine density.

DetectorLaser
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Figure: Mach-Zehnder interferometer.
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Interferometry

Interferometer Density Measurements

I Density is important because:
I Basic parameter required for economical fusion power.
I Affects maximum temperature achievable in plasma (less density,

higher temperature).
I Very low density (eg after gettering) can cause sudden crashes.
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Figure: (Left) Interferometers show plasma being compressed as it travels down
injector. (Right) Interferometer positions.
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Polarimetry

Faraday Rotation and Polarimetry

I Faraday rotation of a linearly polarized beam’s polarization plane by a
magnetized plasma.

I Amount of Faraday rotation depends on plasma magnetic field and
density (Chen, 1984, p136):

φf [deg] = 1.5 × 10−11λ2

∫
neB‖dl
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Figure: Faraday rotation of a beam of light in a plasma.
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Polarimetry

Three-Beam Heterodyne Polarimetry

I Polarimeter measures Faraday rotation to give information on density
and inner magnetic field of plasma.

I Does not disturb plasma, unlike magnetic probe array.

I GF polarimeter uses three beams of slightly different frequencies to
carry information (heterodyning).
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Figure: Three-beam heterodyne polarimeter.
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Polarimetry

Polarimeter at GF

I Uses a CO2 laser (10.6µm) that produces a sufficiently high
frequency beam to avoid reflection off plasma.

I Acousto-optic modulators frequency shift beams by 25MHz and
40MHz to allow for heterodyning.

Figure: Polarimeter at GF: (Left) bottom level, (Right) top level.
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Polarimetry

Polarimeter Data

I Must calibrate polarimeter to have well-circularly polarized, highly
collinear beams.

I Results agree well with expected Faraday rotation from model based
on magnetic probe measurements (Carle et al., 2013) .
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Figure: Polarimeter measurements compared to probe model.
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Spectroscopy

Spectroscopy

I Spectrometer spreads observed light into its component colours with
a diffraction grating.

I Excited atoms emit light at specific wavelengths (line radiation).
I Spectroscopy can give information on flow velocity, temperature,

density and impurities.
I Impurities usually undesirable since they radiate power out of plasma.
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Figure: (Left) Spectrometer illustration. (Right) Segment of visible spectrum
measured with spectrometer/camera (by J. McCone)
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Spectroscopy

Vacuum Ultraviolet Spectrometer

I For readings on the hot plasma core, need to go beyond visible
wavelengths since highly ionized atoms emit almost exclusively in the
ultraviolet (UV).

I Vacuum-UV (VUV) absorbed by air, so need to do VUV spectroscopy
inside machine vacuum.

Figure: (Left) VUV spectrometer. (Right) VUV spectrum. (by J. McCone)
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Spectroscopy

Ion-Doppler Line Broadening

I Line radiation emitted from moving ions is Doppler shifted.
I Observe broadened lines due to distribution of ion velocities. Allows

for a measurement of ion temperature.
I Must account for Stark broadening, which depends on plasma density.
I Measured Ion-Doppler temperatures at GF sometimes seem too high.

Possibly due to energetic reconnection events.

Spectrum 1

Spectrum 2

Spectrum 3

Wavelength
Figure: (Left) Broadened lines give (Right) temperature. (by J. McCone)
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Spectroscopy

Plasma Flow Velocity

I Doppler shift in central wavelength indicates plasma flow.

I Measurements indicate plasma travels down injector at up to
100km/s.

I Observe that plasma is rotating, which might have implications for
stability.
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Figure: Spectrometer has measured spheromak rotation (by J. McCone)
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Thomson Scattering

Thomson Scattering

I Thomson scattering occurs when incident light accelerates an
electron, which re-emits the light.

I Scattered light is Doppler broadened due to velocity distribution.
I Measure electron temperature from broadening, and density from

scattered light intensity.

n ∝ Area

T ∝ σ2

Figure: (Left) Thomson scattering. (Right) Doppler broadened scattered light.
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Thomson Scattering

One-Dimensional Thomson Scattering

I Current system measures temperature at one point in space and time.

I With an Intesified-CCD camera, can collect scattered light across
entire laser line, giving spatially resolved density and temperature.

I Possibly get temporal resolution by bouncing laser back and forth.
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Figure: (Left) 1D Thomson setup. (Right) Simulated 1D Thomson data.
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Neutron Detection

Neutron Detection

I Detection of neutrons during a shot is a sign of fusion.

I Neutron yield increases with temperature, so could potentially use to
measure temperature.

I GF detects neutrons primarily with a scintillator/photomultiplier tube,
and also has bubble detectors for confirmation of high yield events.
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Figure: Deuterium-Deuterium fusion reaction can produce a neutron.
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Neutron Detection

Neutron Data

I Must distinguish between gamma rays and neutron signals.
I Pulse shape discrimination.
I Shielding: lead blocks gammas, polyethylene blocks neutrons.

I GF believes it has detected neutrons. Often unclear if they are from
thermonuclear fusion or high-energy particle beams.

Figure: (Left) Pulse-shape discrimination. (Right) Scintillator detects neutrons.
(by S.Howard)
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Summary

Summary

I Plasmas tend to be complex structures, which are not easily
understood.

I Require many different diagnostics to collect pieces of incomplete
plasma puzzle.

I Fill in the missing pieces with computer simulations for a better
understanding of dynamics.
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Thomson Data

I Raw data is Thomson scattered light + stray light (+ plasma light).
I Centre wavelength blocked due to very bright stray light.
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Thomson Data

I Stray light is laser light bouncing off surfaces inside the machine.
I Measured by firing the laser with no plasma and collecting light.
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Thomson Data

I Subtract stray light from raw data to get Thomson light.
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Thomson Data

I Fit Gaussian to Thomson light data to get temperature measurement.
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