Tritium Handling Technologies

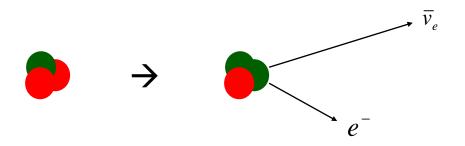
Canadian Workshop on Fusion Energy Science and Technology Oshawa, 2013 August Presented by Hugh Boniface

Outline

- Introduction
- Tritium properties
 - Nuclear, Physical, Chemical, Biological
- Tritium Facts
 - Abundance, Activity, Toxicity
- Handling, measuring
 - Elemental, Water
- Processing
 - Recovery, Extraction, Enrichment, Storage/disposal

Introduction

Tritium and Fusion: Why?


D-T fusion is attractive because:

- It produces a lot of energy (17.7 MeV)
- It has a relatively low activation energy
- It produces neutrons to breed more T

- Protium (normal hydrogen)
 - One proton
 - Most abundant element
- Deuterium (heavy hydrogen)
 - One proton + one neutron
 - 1 part in 6000 on Earth
- Tritium (extra heavy hydrogen)
 - One proton + two neutrons
 - Unstable, radioactive
 - Produced by deuterium neutron capture
 - <1 in 10¹⁶ on Earth

$_{1}^{3}H \implies _{2}^{3}He^{+} + e^{-} + \bar{v}_{e}$

- Beta decay: 18 keV total energy, 5.7 keV (av.) electron
- 12.3 year half-life

- Mass: 6.032 g/mol (T₂)
- Gas at normal T, P
- BP: 25 K (-248°C)

	Protium (H ₂)	Deuterium (D ₂)	Tritium (T ₂)
Molecular mass (g/mol)	2.016	4.028	6.032
Boiling point (K)	20.4	23.7	25.0
Melting point (K)	14.0	18.7	20.6
Critical point (K)	33.2	38.4	40.6
NMR frequency (MHz)	100.5	15.36	104.7

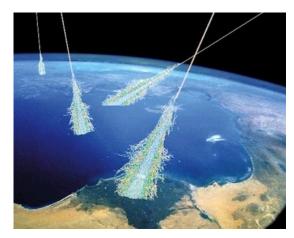
- Tritium undergoes the same chemical reactions as protium and deuterium:
 - Burns in air/oxygen to form water (T₂O)
 - Adsorbs/dissociates on surfaces (e.g. Pt-T)
 - Forms hydrides with metals (e.g. TiT₂)
 - Forms hydrocarbons (OBT)
- Because it is the same element, chemical separations of T from H, D are difficult.

A AFCL FAC

- Tritium follows hydrogen in the human body
- As for H₂, T₂ gas is not significantly absorbed into the body (low solubility in fluids)
- As water:
 - It is absorbed through all membranes (lungs, skin, digestive system)
 - Follows all metabolic paths
 - Is not significantly sequestered
 - Is excreted as water etc.
- General damage to cell constituents from direct radiation and free radicals

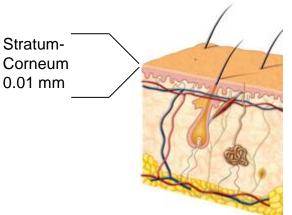
A AFCL FAC

Tritium Facts - 1


- Primary concern is radio-toxicity
 - ~10 day half-life in human body (as water)
 - T_2O is about 10,000 times more toxic than T_2
 - ~1 mSv dose from 0.1 mL of 15 Ci/kg water
- T₂ is converted to T₂O in the environment (slowly in air, quickly in soil), so T₂ has 5-10% of effect of T₂O local to release
- Canadian drinking water limit: 7000 Bq/L (190 pCi/mL), about ten times US limit.

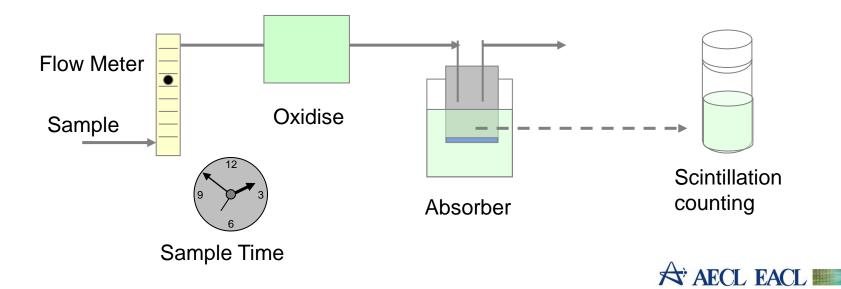
A AFCL FACI

Tritium Facts - 2


- T is produced in atmosphere (cosmic rays etc. – about 200 g/a), but current inventory in troposphere and hydrosphere is mainly from H-bomb testing (about 500-600 kg released up to 1962)
- Most surface waters in Ontario have 1-10 Bq/L (0.03-0.3 pCi/mL)

Tritium Facts - 3

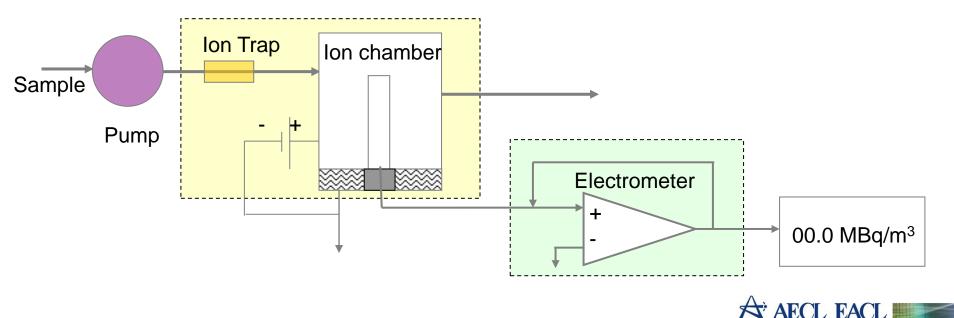
- ~10,000 Ci per gram of T₂
- 1 Ci/kg water has ~0.3 ppm T (mol)
- Get ~35 µW/Ci from decay heat (only beta)
- Beta radiation range:
 - In air 6 mm
 - In water 0.005 mm



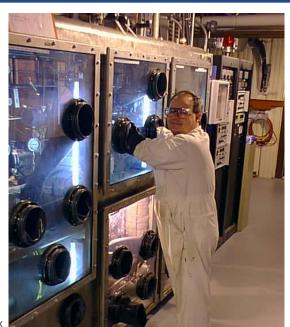
 Tritiated water is corrosive from radiolysis, which produces various active compounds e.g. H₂O₂, H- and O₂

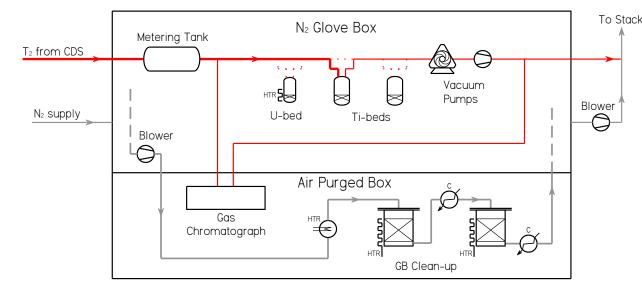
Tritium Measurement - 1

- Low or high concentrations:
 - Sample
 - Convert all to water
 - Add scintillation cocktail and count


(Typical sensitivity: <1 Bq/L, count for hours)

Tritium Measurement - 2


- High concentrations:
 - Draw sample
 - Convert all to gas
 - Measure radiation (ion chamber)

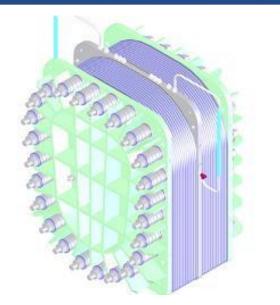

(Typical sensitivity: 40 kBq/m³ with1L chamber)

Tritium Handling - 1

- In elemental form:
 - Best for high concentrations (minimize toxicity)
 - Double barriers (gloveboxes)
 - Forms stable hydrides (e.g. titanium sponge)

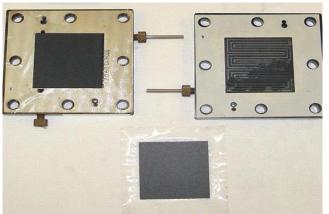
Tritium Handling - 2

- In water form:
 - Best for low concentrations (simple equipment)
 - Simple barriers (PPE)
 - Readily condensed/adsorbed (e.g. mol sieves)

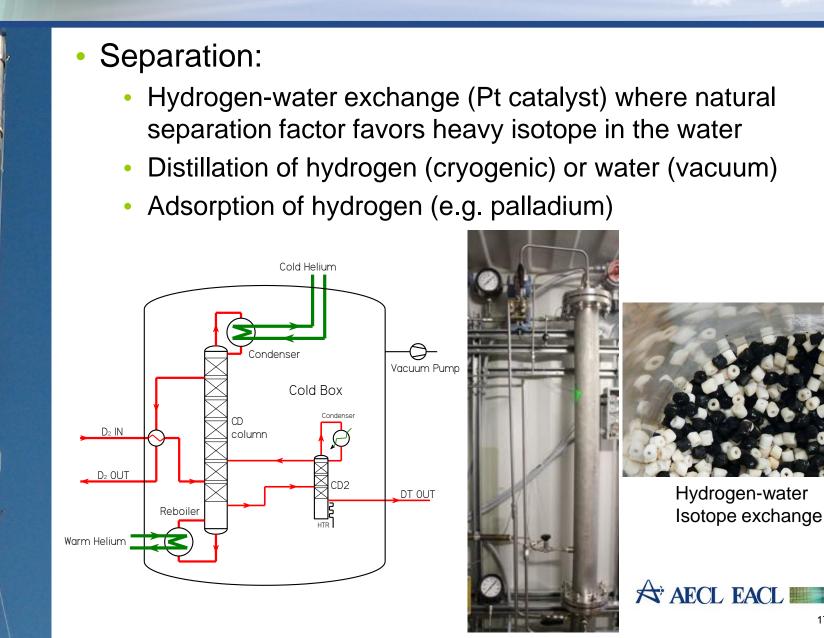


Tritium Processing - 1

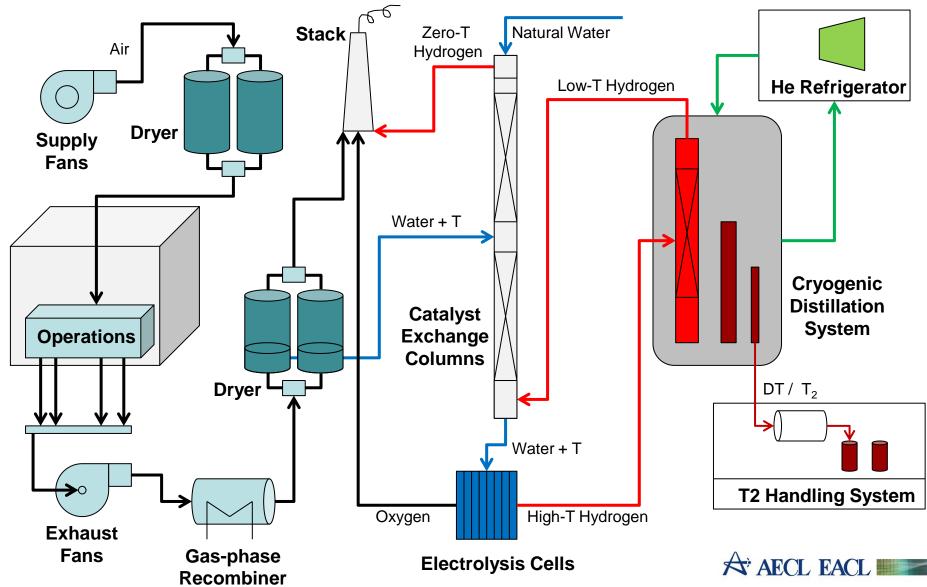
- Chemical conversion:
 - Oxidation OBT or element to water (catalyst)
 - Reduction of water to element (e.g. electrolysis)



Trickle-bed recombiner

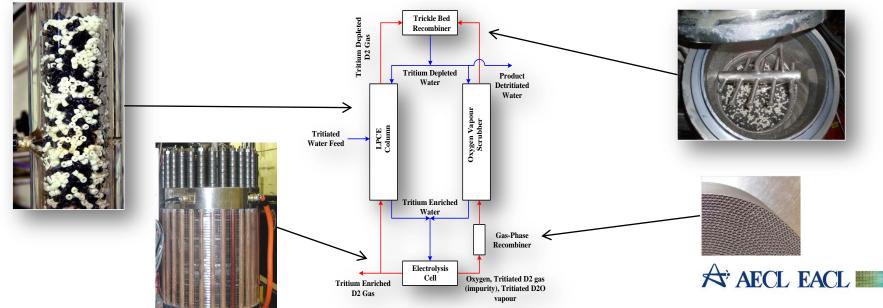

Gas-phase recombiner

E-cell, membranes and catalysts


Tritium Processing - 2

- Example: Tritium recovery system
 - Dry air feed to tritium areas
 - Collect all exhaust air
 - Recombine elemental T (and OBT) to water
 - Adsorb water from air, recover liquid water
 - Feed water to combined electrolysis and catalytic exchange process (CECE)
 - Release hydrogen free from T
 - Send T in hydrogen to cryogenic distillation
 - Return concentrated tritium to process or store it in U-bed.

Tritium Processing System Diagram


AECL's Chalk River Laboratory is the major centre for tritium expertise in Canada with:

- Tritium Facility licensed for 1 million Curies
 - Facilities for handling and dispensing pure tritium
 - Facilities and personnel engaged in active R&D on tritium handling, measurement, use, separations, control, transport, reactions, storage and biological effects
- Tritium models

Tritium Technology in Canada - 2

AECL's R&D products:

- Tritium power sources
- Processes for tritium removal
- Catalysts for tritium reactions and separations
- Certified tritium standards
- Tritium-resistant materials and equipment

