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We have an “existence proof” that ignition in the laboratory is
possible, but getting ignition has been extremely difficult

“Ignition,” defined as the tipping-point of thermodynamic instability, obtained on August 8, 2021
“Scientific Breakeven,” i.e. "Target Gain > 1” obtained on Dec. 4, 2022 and bested on July 29, 2023
”"Net energy gain,” i.e. “Engineering Gain > 1” not yet demonstrated

Lessons learned:

— Stability control, symmetry control, and
high compression all more difficult than
originally envisioned

— More sensitivity to target quality and
laser delivery than originally envisioned

— Higher energy has been more useful than | ' i 2
high peak power >30W”400 |V|J energy;m cé E'g;tors W féuget chambéﬁ'
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In indirect-drive, the hohlraum, capsule ablator, and laser-pulse
integrate together to control the implosion
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Indirect drive is energy inefficient, but we are trading energy for
energy density since implosions act like “pressure amplifiers”
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Energy in NIF capacitor banks 300-400 MJ Gengineering
WS Laser (3w 351 nm) into target 1-1.9 MJ nla Gharget
z
# y X-rays into capsule surface 150-250 kJ 100-200 Mbar Geapsule
Energy into DT 10-20 kJ 100-550 Gbar Gruel

The dramatic loss in energy at different stages of
ICF operation leads to several different definitions
of Gain:

ILasers

t=0 ,‘ t~5-10ns t~10-16 ns t~ peak compresswn
[ e
Ablator [ .

Ablated plasma

Ablated plasma - Gengineering = fusion yield / faCIIIty energy

- Giarget = fusion yield / laser energy
- Geapsule = fusion yield / capsule absorbed energy
- Gyyel = fusion yield / energy delivered to DT

DT fuel

Hotspot

Betti & Hurricane, Nature Phys. (2016) ~400 Gbars
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After a decade of problem solving, for the first time in the
laboratory ignition and scientific breakeven have been achieved
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Giarget > 1 is not “net energy gain,” because of facility energy consumption

NS

Notions Naclesr Secerity Admioistrstion




2010-12: Plastic ablator “Low-foot” implosions were designed to
be high compression and yield ( > 1 MJ), but underperformed”
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2013-2015: High-foot implosions tested if better controlling
hydrodynamic instability would improve performance
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2015-2018: 2x higher yield achieved using high density carbon
ablators (instead of plastic) and low helium gas-fill hohlraums
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Implosions seemed “stuck” at T ~ 5 keV

6.00
/en,,, on

5.00
hlgh-adiabat +

high velocity
—*—430/,,,, / (~400 km/s)

4.00
— e LF
Mgpen E ® HFTO
\:ﬁ 3.00 HF T-1
|_':E low-adiabat + ® HFT-1.5
voo ° l(gga\éell(t:/:\)/ e HFT-1672
NEEF IaNE LFAS
@ HFAS
® Be
1.00 @ HDC 2SH VAC
@ HDCLGF
PPCF, 61, 014033 (2018) @ BFSC

0.000 0050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Lawrence Livermore National Laboratory
LLNL-PRES-856216

Casey, et al, PoP, 2018; Baker, et al, PRL, 2018; Thomas, et al., PoP, 2020
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Felt that v;,;,;, and R, were already near limits due to hydro-
instability, so only design knob left was to increase mg,.;

But if we increase my;,.;; without increasing energy coupling, we reduce v;,,,, and convergence

High Yield Big Radius
Implosion Design* (HYBRID){I_"

Radius increased
Thickness ~ same to start
Thicker later w/ more coupling

Nominal capsule geometry

)
4

Slightly increased A-RT risk

T T

0200/ 600 1000

Hydroscale (e.g. Iraum+) HotThick

Radius and Thickness increase .
Inner (or outer) radius ~same, but

in the same proportion 5n 7n . .
4 4 thickness increased
Risk with new hohlraum, but 3n i .
low A-RT risk . Hot hohlraum (risky) for ~same velocity but

A-RT stability much better

All need symmetry control otherwise the energy delivered to the hotspot is diminished
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Implosion symmetry control is important, because it wastes shell
KE, that could have heated & compressed the fusion fuel

Asymmetric implosion abstracted to pistons RKE Simulations:

Y~ Burn-off LF from Kritcher, et al., PoP, 2014
pV const B Burn-on LF from Kritcher, et al., PoP, 2014
Burn-on HF from Kritcher, et al., PoP, 2016
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We need to maintain short “coast-times” in order to minimize the
implosion deceleration time, maximizing hotspot pressure & power

Which is better? Adding energy
with more power or more duration?

Experimental observation
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Significantly improved understanding of the levers controlling
laser indirect drive implosion symmetry obtained by 2018

End of Peak Power Legendre mode-2 E0 Callahan, et al., PoP, 2018;

(“P2”) empirical £ f Ralph,etal, PoP, 2010
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2018-2020: With a better understanding of the levers on capsule
and hohlraum control, we scaled up capsule radius, but ...
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In 2019, both Hybrid-E and Iraum were renewed attempts at
larger capsules, 1.9 MJ NIF, and different hohlraum tactics

LLNL-PRES-856216 Zylstra, et al., Nature (2022): Kritcher et al, Nature Phys. (2022): Ross, et al, arXiv (2022) N o Secr Aasiion
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12 years of experimental effort to obtain fusion ignition (on 8/8/21)
and target energy gain (on 12/4/22) by problem-solving in steps
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Outstanding problem: materials appear stiffer than models expected
and higher compression is needed for increased burn efficiency

Measured compression
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Record so far ~ 5%

~33% usually assumed
for IFE purposes

Leading hypothesis for problem is (still) hydro-instability
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The end of the beginning...there is more work to do!
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We have an “existence proof” of fusion ignition and scientific
breakeven (i.e. target gain >1) but practical challenges exist

= Low adiabat designs have yet to work as desired
— Leading hypothesis is instability control at the fuel-ablator interface
—  Forces us to work at high adiabat which implies lower potential gain

= High implosion velocity and low coast (extended duration of late-time x-ray drive) are very effective, if the implosion is not
compromised by other degradations

— More energy to target is highly desirable in order to “pay” for symmetry and mix energy “costs”

=  Symmetry control has been very hard to manage
—  Symmetry of the shell (fuel + remaining ablator) areal density is the driving physical factor
—  Favors shorter laser pulses, low hohlraum gas fill (for LPI), and larger case-to-capsule ratio hohlraums
Opposite of what you want for IFE!

= Hydro instability and mix are manageable to a degree, but are still a limiting factor
= Engineering control (of laser and targets) is extremely challenging

= Keep in mind 1 kWh (kilowatt-hour) = 3.6 MJ and average US household energy use is 30 kWh per day, so a long way to go for practical
fusion energy
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or
product endorsement purposes.

B Lawrence Livermore
National Laboratory



